6 resultados para coastal lagoon
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Marine litter and plastics are a significant and growing marine contaminant that has become a global problem. Macrolitter is subject to fragmentation and degradation due to physical, chemical and biological processes, leading to the formation of micro-litter, the so-called microplastics. The purpose of this research is to assess marine litter pollution by using remote sensing tools to identify areas of macrolitter accumulation and to evaluate the concentrations of microplastics in different environmental matrices: water, sediment and biota (i.e. mussels and fish) and to contribute to the European project MAELSTROM (Smart technology for MArinE Litter SusTainable RemOval and Management). The aim is to monitor the presence of macro- and microlitter at two sites of the Venice coastal area: an abandoned mussel farm at sea and a lagoon site near the artificial Island of Sacca Fisola; The results showed that both study areas are characterised by high amounts of marine litter, but the type of observed litter is different. In fact, in the mussel farm area, most of the litter is linked to aquaculture activities (ropes, nets, mooring blocks and floating buoys). In the Venice lagoon site, the litter comes more from urban activities and from the city of Venice (car tyres, crates, wrecks, etc.). Microplastics is present in both sites and in all the analysed matrices. Generally, higher microplastics concentrations were found at Sacca Fisola (i.e., in surface waters, mussels and fish). Moreover, some differences were also observed in shapes and colours comparing the two sites. At Sacca Fisola, white irregular fragments predominate in water samples, blue filaments in sediment and mussels, and transparent irregular fragments in fish. At the Mussel Farm, blue filaments predominate in water, sediment and mussels, while flat black fragments predominate in fish. These differences are related to the different types of macrolitter that characterised the two areas.
Resumo:
This thesis examines the effects of flooding on coastal and salt marsh vegetation. I conducted a field experiment in Bellocchio Lagoon to test the effects of different inundation periods (Level 1 = 0.468 or 11.23 hours; Level 2 = 0.351 or 8.42 hours; Level 3 = 0.263 or 6.312 hours; Level 4 = 0.155 or 3.72 hours; Level 5 = 0.082 or 1.963 hours; Level 6 = 0.04 or 0.96 hours) on the growth responses and survival of the salt marsh grass Spartina maritima in summer 2011 and 2012. S. maritima grew better at intermediate inundation times (0,351 hours; 0,263 hours, 0,115 hours; 0,082 hours), while growth and survival were reduced at greater inundation periods (0,468 hours). The differences between the 2011 and 2012 experiment were mainly related to differences in the initial number of shoots (1 and 5, respectively in 2011 and 2012). In the 2011 experiment a significant lower number of plants was present in the levels 1 and 6, the rhizomes reached the max pick in level 4, weights was major in level 4, spike length reached the pick in level 3 while leaf length in level 2. In the 2012 experiment the plants in level 6 all died, the rhizomes were more present in level 3, weights was major in level 3, spike length reached the pick in level 3, as well as leaf length. I also conducted a laboratory experiment which was designed to test the effects of 5 different inundation periods (0 control, 8, 24, 48, 96 hours) on the survival of three coastal vegetation species Agrostis stolonifera, Trifolium repens and Hippopae rhamnoides in summer 2012. The same laboratory experiment was repeated in the Netherlands. In Italy, H. rhamnoides showed a great survival in the controls, a variable performance in the other treatments and a clear decrease in treatment 4. Conversely T. repens and A. stolonifera only survive in the control. In the Netherlands experiment there was a greater variability responses for each species, still at the end of the experiment survival was significantly smaller in treatment 4 (96 h of seawater inundation) for all the three species. The results suggest that increased flooding can affect negatively the survival of both saltmarsh and coastal plants, limiting root system extension and leaf growth. Flooding effect could lead to further decline and fragmentation of the saltmarshes and coastal vegetation, thereby reducing recovery (and thus resilience) of these systems once disturbed. These effects could be amplified by interactions with other co-occurring human impacts in these systems, and it is therefore necessary to identify management options that increase the resilience of these systems.
Resumo:
The present study is based on the use of isotopes for evaluating the efficiency of nutrients removal of a wetland, in particular nitrogen and nitrates, also between the different habitats present in the wetland. Nutrients like nitrogen and phosphorus, normally distributed as fertilizers, are among the principal causes of diffuse pollution. This is particularly important in the Adriatic Sea, which is frequently subjected to eutrophication phenomena. So it is very crucial requalification of wetland, in which there are naturally depurative processes such as denitrification and plant uptake, which allow the reduction of pollutant loads that flow in water bodies. In this study nutrient reduction is analyzed in the wetland of the Comuna drain, which waters flow in the Venice lagoon. Chemical and isotopical analyses were performed on samples of water, vegetation, soil and sediments taken in the wetlands of the Comuna drain in four different periods of the year and on data of nitrogen and phosphorus concentration obtained by the LASA of the University of Padova. Values of total nitrogen and nitrates were obtained in order to evaluate the reduction within the different systems of the wetland. Instead, the isotopic values of nitrogen and carbon were used to evaluate which process influence more nitrogen reduction and to understand the origin of the nutrient, if it is from fertilizers, waste water or sewage. To conclude, the most important process in the wetland of the Comuna drain is plant uptake, in facts the bigger percentage of nitrogen reduction was in the period of vegetative growth. So it is important the study of isotopes in plant tissues and water residence time, whose increase would allow a greater reduction of nutrients.
Resumo:
The association of several favorable factors has resulted in the development of a wide barchan dune field that stands out as a fundamental element in the coastal landscape of southern Santa Catarina state in Brazil. This original ecosystem is being destroyed and highly modified, due to urbanization. This work identifies and discusses its basic characteristics and analyzes the favorable factors for its preservation, in the foreseen of both a sustainable future and potential incomes from ecotourism. The knowledge of the geologic evolution allows to associate this transgressive Holocene dunes formation to more dissipative beach conditions. Spatial differences on morphodynamics are related to local and regional contrasts in the sediment budget, with an influence on gradients of wave attenuation in the inner shelf and consequently with influence in the level of coastal erosion. The link between relative sea level changes and coastal eolian sedimentation can be used to integrate coastal eolian systems to the sequence stratigraphy model. The main accumulation phase of eolian sediments would occur during the final transgressive and highstand systems tracts. Considering the global character of Quaternary relative sea level changes, the Laguna transgressive dune field should be correlated with similar eolian deposits developed along other parts of the Brazilian coast compatibles with the model of dunefield initiation during rising and highstand sea level phases.
Resumo:
The growing need to assess the environmental status of the Mediterranean coastal marine habitats and the large availability of data collected by Reef Check Italia onlus (RCI) volunteers suggest the possibility to develop innovative and reliable indices that may support decision makers in applying conservation strategies. The aims of this study were to check the reliability of data collected by RCI volunteers, analyse the spatial and temporal distribution of RCI available data, resume the knowledge on the biology and ecology of the monitored species, and develop innovative indices to asses the ecological quality of Mediterranean subtidal rocky shores and coralligenous habitats. Subtidal rocky shores and coralligenous were chosen because these are the habitats more attractive for divers; therefore mlst data are referring to them, moreover subtidal rocky bottom are strongly affected by coastal urbanisation, land use, fishing and tourist activities, that increase pollution, turbidity and sedimentation. Non-indigenous species (NIS) have been recognized as a major threat to the integrity of Mediterranean native communities because of their proliferation, spread and impact on resident communities. Monitoring of NIS’ spreading dynamics at the basin spatial scale is difficult but urgent. According to a field test, the training provided by RCI appears adequate to obtain reliable data by volunteers. Based on data collected by RCI volunteers, three main categories of indices were developed: indices based on species diversity, indices on the occurrence non-indigenous species, and indices on species sensitive toward physical, chemical and biological disturbances. As case studies, indices were applied to stretches of coastline defined according to management criteria (province territories and marine protected areas). The assessments of ecological quality in the Tavolara Marine Protected Area using the species sensitivities index were consisten with those previously obtained with traditional methods.
Resumo:
Polychaetes are one of the larger groups of macroinvertebrates with more than 9000 species recognised, distributed worldwide. Thanks to the broad ecological adaptability and high abundaces, this taxon plays a leading role and is considered an important component of all benthic assemblages. Our knowledge about the West Iberian Coast polychaete fauna are scarce, and the only studies are recent. In this sense, the aim of this work was to investigate the composition and the spatial distribution of the polychaete fauna along the NW Portuguese Coastal Shelf, focusing on their relationship to environmental factors (depth, grain size, longitude and latitude) and to add new data to the existing biological dataset. A total of 39 sites were analysed, collected in an area of about 5665 km², between 20 and 150 m depth, distributed in a way to cover the overall grain size gradient. A total of 9352 specimens belonging to 41 families were found, and the analysis based on the abundance of polychaete species revealed five affinity groups: (a) nearshore medium sand characterised by Pisione parapari and Hesionura elongata; (b) very coarse sand that showed the highest abundance of Syllidae and was characterised by Protodorvillea kefersteini and Syllis garciai; (c) fine sand dominated by Spiophanes bombyx and Glycera tridactyla; (d) very fine sand with Nepthys assimilis and Amage sp. and the highest abundance of Paraonidae; (d) mud characterised by Labioleanira yhleni and Ampharete finmarchica. The combination of the environmental variables and the biological data, done with BIOENV routine, demonstrated that depth, grain size and fine contents were the best related with the biological data (rho=0.598). In general, the results agree with the composition and the spatial distribution of the polychaete fauna in other parts of the world; further polychaete assemblages related to mud sediments were firstly recorded in the Northwestern Portuguese Coastal Shelf.