2 resultados para class D amplifier
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The convergence of information technology and consumer electronics towards battery powered portable devices has increased the interest in high efficiency, low dissipation amplifiers. Class D amplifiers are the state of the art in low power consumption and high performance amplification. In this thesis we explore the possibility of exploiting nonlinearities introduced by the PWM modulation, by designing an optimized modulation law which scales its carrier frequency adaptively with the input signal's average power while preserving the SNR, thus reducing power consumption. This is achieved by means of a novel analytical model of the PWM output spectrum, which shows how interfering harmonics and their bandwidth affect the spectrum. This allows for frequency scaling with negligible aliasing between the baseband spectrum and its harmonics. We performed low noise power spectrum measurements on PWM modulations generated by comparing variable bandwidth, random test signals with a variable frequency triangular wave carrier. The experimental results show that power-optimized frequency scaling is both feasible and effective. The new analytical model also suggests a new PWM architecture that can be applied to digitally encoded input signals which are predistorted and compared with a cosine carrier, which is accurately synthesized by a digital oscillator. This approach has been simulated in a realistic noisy model and tested in our measurement setup. A zero crossing search on the obtained PWM modulation law proves that this approach yields an equivalent signal quality with respect to traditional PWM schemes, while entailing the use of signals whose bandwidth is remarkably smaller due to the use of a cosine instead of a triangular carrier.
Resumo:
This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.