3 resultados para chlorine substituent
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.
Resumo:
The present work started a research project aimed at the synthesis of conformationally “locked” PNA (Peptide Nucleic Acids) monomers. Compared to classic aeg-PNA, this structural modification would result in an improvement in the pairing properties with natural nucleic acids, due to entropic variations in the process. Specifically, an attempt was made to build a PNA monomer around a β-lactam ring. That ring could be imagined as obtained by linking the methylene groups in α position of both the nucleobase and the carboxyl function. These structural properties would imply pre-organization of the final oligomer, improving the pairing process in biological systems. The first step of this work was the investigation of the Staudinger reaction for the ciclization of the lactam ring, and in particular the activation method of the carboxylic group of the nucleobase derivatives. Use of triazine chloride led to the synthesis of the adenine-based β-lactam-PNA. Attempts to synthesize the same monomer based on cytosine, guanine and thymine were unsuccessful, so alternative methods for carboxylic group activation were investigated. Conversion of carboxylic acids to acyl chlorides led to a partial result: despite the method worked well with analogues of the final reactants, it didn’t worked with substrates needed for lactam based PNAs. Search for a valid activation process continued involving carbonyl diimidazole, Mukayama reagent, and LDA (with methylester derivative of nucelobase) without good results. Last, it was investigated a different synthetic approach by first synthesizing a proper backbone with a chlorine in the β- lactam ring. This chlorine ring should undergo substitution by a nucleobase anion to give the desired PNA monomer. Unluckily also this synthetic route didn’t lead to the desired monomers.
Resumo:
In this thesis we studied the stereodynamic behavior of 1,2-azaborines variously substituted on boron (7a, 7b, 13). Depending on the hindrance of the asymmetric aryl substituent the resulting conformations could be stereolabile or configurationally stable. Through dynamic NMR and lineshape simulation, the energy rotational barriers of the different conformers are obtained. When the barrier is higher than 22-23 kcal/mol stable atropisomers that are fisically separable could be obtained (case of compound 13) and the free activation energy barrier is determinable by kinetic analysis. Absolute configuration of two atropisomers were assigned by comparison between computational calculations and experimental ECD. Isosteric compound 21 is then synthesized in order to compare the rotational barrier around B-Caryl with the one around Cnaphth-Caryl bond.