3 resultados para carbothermal reduction process.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Li-rich layered transition metal oxides (LLOs) Li2MnO3-LiMO2 (M=Mn, Co, Ni, etc.) have drawn considerable attention as cathode materials for rechargeable lithium batteries. They generate large reversible capacities but the fundamental reaction mechanism and structural perturbations during cycling remain controversial. In the present thesis, ex situ X-ray absorption spectroscopy (XAS) measurements were performed on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 at different stage of charge during electrochemical oxidation/reduction. K-edge spectra of Co, Mn and Ni were recorded through a voltage range of 3.7-4.8V vs. Li/Li+, which consist of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Oxidation states during initial charge were discussed based on values from literature as well as XANES analysis. Information about bond distance, coordination number as well as corresponding Debye-Waller factor were extracted from Gnxas analysis of raw data in the EXAFS region. The possibility of oxygen participation in the initial charge was discussed. Co and Ni prove to take part in the oxidation/reduction process while Mn remain in the tetravalent state. The cathode material appears to retain good structural short-range order during charge-discharge. A resemblance of the pristine sample and sample 4 was discovered which was firstly reported for similar compounds.
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Nowadays the number of hip joints arthroplasty operations continues to increase because the elderly population is growing. Moreover, the global life expectancy is increasing and people adopt a more active way of life. For this reasons, the demand of implant revision operations is becoming more frequent. The operation procedure includes the surgical removal of the old implant and its substitution with a new one. Every time a new implant is inserted, it generates an alteration in the internal femur strain distribution, jeopardizing the remodeling process with the possibility of bone tissue loss. This is of major concern, particularly in the proximal Gruen zones, which are considered critical for implant stability and longevity. Today, different implant designs exist in the market; however there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. The aim of the study is to investigate the stress shielding effect generated by different implant design parameters on proximal femur, evaluating which ranges of those parameters lead to the most physiological conditions.