2 resultados para carbon neutral
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A promising strategy to mitigate both the energy crisis and global warming is the development of solar fuels and chemicals using as feedstock CO2 in combination with simple molecules such as water. This process stores the solar energy into chemical bonds, leading to a carbon-neutral approach of fuels and chemicals production. Aim of this thesis was the synthesis and characterization of CaCu3Ti4O12 (CCTO)- based compounds to be used as visible light photocatalyst for CO2 to chemical conversion. Different compositions were produced doping CCTO with increasing concentration of iron into the perovskite’s A site in order to identify the materials with the highest photo- and photoelectrocatalytic properties. The most promising compositions were used to produce photoelectrodes by screen printing that were characterized by linear and cyclic voltammetry, impedance spectroscopy and Mott-Schottky analysis to evaluate the electrical conductivity and calculate the flat band potential and the number of charge carriers in the samples. The photoelectrodes were then tested in a photoelectrochemical (PEC) cell for the conversion of CO2 into fuel and chemicals. The results obtained confirm that CCTO-based materials can be considered promising materials for carbon dioxide photo-electrochemical reduction.
Resumo:
The current environmental and socio-economic situation promotes the development of carbon-neutral and sustainable solutions for energy supply. In this framework, the use of hydrogen has been largely indicated as a promising alternative. However, safety aspects are of concern for storage and transportation technologies. Indeed, the current know-how promotes its transportation via pipeline as compressed gas. However, the peculiar properties of hydrogen make the selection of suitable materials challenging. For these reasons, dilution with less reactive species has been considered a short and medium solution. As a way of example, methane-hydrogen mixtures are currently transported via pipelines. In this case, the hydrogen content is limited to 20% in volume, thus keeping the dependence on natural gas sources. On the contrary, hydrogen can be conveniently transported by mixing it with carbon dioxide deriving from carbon capture and storage technologies. In this sense, the interactions between hydrogen and carbon dioxide have been poorly studied. In particular, the effects of composition and operative conditions in the case of accidental release or for direct use in the energy supply chain are unknown. For these reasons, the present work was devoted to the characterization of the chemical phenomena ruling the system. To this aim, laminar flames containing hydrogen and carbon dioxide in the air were investigated experimentally and numerically. Different detailed kinetic mechanisms largely validated were considered at this stage. Significant discrepancies were observed among numerical and experimental data, especially once a fuel consisting of 40%v of hydrogen was studied. This deviation was attributed to the formation of a cellular flame increasing the overall reactivity. Hence, this observation suggests the need for combined models accounting for peculiar physical phenomena and detailed kinetic mechanisms characterizing the hydrogen-containing flames.