2 resultados para calcium-alginate beads

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is part of a long-term project which aims to demonstrate for the first time that alginate gel beads can be used as chiral heterogeneous catalysts for enantioselective reactions. Alginate barium beads were prepared as previously optimized and applied to the Friedel-Crafts reaction between indoles and nitroalkenes. New substrates were tested, showing that the reaction can accommodate different nitroalkenes and indoles, affording the corresponding products with moderate yields and good enantioselectivities. However, aliphatic nitroalkenes cannot be used as they degrade under the catalytic reaction conditions. Preliminary study on the recyclability of the heterogeneous catalyst indicated a moderate stability of the catalyst, which can be used for few cycles with a slight erosion of enantioinducing power. Some directions for future improvements (storage and work-up solvent, use of ultrasonic bath) have been suggested.