2 resultados para brain protein
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the present study, we have tried to expand our knowledge about the endocrine mechanisms that regulate feeding and growth in cultured fish, which could be relevant for the improvement of fish farming conditions and feeding strategies. In order to reach this goal, we have investigated some orexigenic hormones, Neuropeptide Y (NPY) and the paralogues of Agouti-related protein, (AgRP1, AgRP2) in Solea senegalensis, an important species for Mediterranean aquaculture. We focused on hormones synchronization to different feeding regimes (diurnal vs nocturnal and random feeding) and photoperiod (light-dark cycle vs constant darkness). Therefore, the achieved results could also be relevant from a chronobiological perspective. Solea senegalensis specimen were reared in two different photoperiods, i.e.LD Light-Dark conditions as well as in DD conditions (constant darkness) along with different feeding regimes (fed at ML, Med and RND times), so to determine if mRNA expression of orexigenic hormones (NPY, AgRP1 and AgRP2) are entrained by feeding time and/or photoperiod. Our results show an independence of npy mRNA expression from the feeding time and suggest an endogenous control of npy expression in telencephalon of sole, while in optice tectum, npy expression could be entrained by the light-dark cycle. Our results on Senegalese sole AgRP1 and AgRP2 showed the same pattern of expression, indicating that expression of AgRPs is related to photoperiod in optic tectum, instead to feeding time. However the involvement of AgRP1 and AgRP2 in feeding behaviour should not be discarded in sole, as further research will be carried out with specimens maintained under different fasting conditions. our results reinforce the role of the telencephalon as the main neural area involved in the neuroendocrine control of food intake in fish, where endogenous NPY rhythms have been found, while diencephalon statistical variations weren’t observed suggesting that this brain area could be less involved in the neuroendocrine control of food intake in fish than previously thought.
Resumo:
In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.