4 resultados para biological production

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this essay aims at investigating the already available and promising technologies for the biogas and bio-hydrogen production from anaerobic digestion of different organic substrates. One strives to show all the peculiarities of this complicate process, such as continuity, number of stages, moisture, biomass preservation and rate of feeding. The main outcome of this part is the awareness of the huge amount of reactor configurations, each of which suitable for a few types of substrate and circumstance. Among the most remarkable results, one may consider first of all the wet continuous stirred tank reactors (CSTR), right to face the high waste production rate in urbanised and industrialised areas. Then, there is the up-flow anaerobic sludge blanket reactor (UASB), aimed at the biomass preservation in case of highly heterogeneous feedstock, which can also be treated in a wise co-digestion scheme. On the other hand, smaller and scattered rural realities can be served by either wet low-rate digesters for homogeneous agricultural by-products (e.g. fixed-dome) or the cheap dry batch reactors for lignocellulose waste and energy crops (e.g. hybrid batch-UASB). The biological and technical aspects raised during the first chapters are later supported with bibliographic research on the important and multifarious large-scale applications the products of the anaerobic digestion may have. After the upgrading techniques, particular care was devoted to their importance as biofuels, highlighting a further and more flexible solution consisting in the reforming to syngas. Then, one shows the electricity generation and the associated heat conversion, stressing on the high potential of fuel cells (FC) as electricity converters. Last but not least, both the use as vehicle fuel and the injection into the gas pipes are considered as promising applications. The consideration of the still important issues of the bio-hydrogen management (e.g. storage and delivery) may lead to the conclusion that it would be far more challenging to implement than bio-methane, which can potentially “inherit” the assets of the similar fossil natural gas. Thanks to the gathered knowledge, one devotes a chapter to the energetic and financial study of a hybrid power system supplied by biogas and made of different pieces of equipment (natural gas thermocatalitic unit, molten carbonate fuel cell and combined-cycle gas turbine structure). A parallel analysis on a bio-methane-fed CCGT system is carried out in order to compare the two solutions. Both studies show that the apparent inconvenience of the hybrid system actually emphasises the importance of extending the computations to a broader reality, i.e. the upstream processes for the biofuel production and the environmental/social drawbacks due to fossil-derived emissions. Thanks to this “boundary widening”, one can realise the hidden benefits of the hybrid over the CCGT system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing attention to environmental issues of recent times encourages us to find new methods for the production of energy from renewable sources, and to improve existing ones, increasing their energy yield. Most of the waste and agricultural residues, with a high content of lignin and non-hydrolysable polymers, cannot be effectively transformed into biofuels with existing technology. The purpose of the study was to develop a new thermochemical/ biological process (named Py-AD) for the valorization of scarcely biodegradable substances. A complete continuous prototype was design built and run for 1 year. This consists into a slow pyrolysis system coupled with two sequential digesters and showed to produce a clean pyrobiogas (a biogas with significant amount of C2-C3 hydrocarbons and residual CO/H2), biochar and bio-oil. Py-AD yielded 31.7% w/w biochar 32.5% w/w oil and 24.8% w/w pyrobiogas. The oil condensate obtained was fractionated in its aqueous and organic fraction (87% and 13% respectively). Subsequently, the anaerobic digestion of aqueous fraction was tested in a UASB reactor, for 180 days, in increasing organic loading rate (OLR). The maximum convertible concentration without undergoing instability phenomena and with complete degradation of pyrogenic chemicals was 1.25 gCOD L digester-1 d-1. The final yield of biomethane was equal to 40% of the theoretical yield and with a noticeable additional production equal to 20% of volatile fatty acids. The final results confirm that anaerobic digestion can be used as a useful tool for cleaning of slow pyrolysis products (both gas and condensable fraction) and the obtaining of relatively clean pyrobiogas that could be directly used in internal combustion engine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.