3 resultados para bioavailability of selenium in fish feed
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of my dissertation is to analyze how selected elements of language are addressed in two contemporary dystopias, Feed by M. T. Anderson (2002) and Super Sad True Love Story by Gary Shteyngart (2010). I chose these two novels because language plays a key role in both of them: both are primarily focused on the pervasiveness of technology, and on how the use/abuse of technology affects language in all its forms. In particular, I examine four key aspects of language: books, literacy, diary writing, as well as oral language. In order to analyze how the aforementioned elements of language are dealt with in Feed and Super Sad True Love Story, I consider how the same aspects of language are presented in a sample of classical dystopias selected as benchmarks: We by Yevgeny Zamyatin (1921), Brave New World by Aldous Huxley (1932), Animal Farm (1945) and Nineteen Eighty-Four (1949) by George Orwell, Fahrenheit 451 by Ray Bradbury (1952), and The Handmaid's Tale by Margaret Atwood (1986). In this way, I look at how language, books, literacy, and diaries are dealt with in Anderson’s Feed and in Shteyngart’s Super Sad True Love Story, both in comparison with the classical dystopias as well as with one another. This allows for an analysis of the similarities, as well as the differences, between the two novels. The comparative analysis carried out also takes into account the fact that the two contemporary dystopias have different target audiences: one is for young adults (Feed), whereas the other is for adults (Super Sad True Love Story). Consequently, I also consider whether further differences related to target readers affect differences in how language is dealt with. Preliminary findings indicate that, despite their different target audiences, the linguistic elements considered are addressed in the two novels in similar ways.
Resumo:
The study aimed to determine the amount of microplastics (MPs) found in the digestive content of some pelagic tuna fish species of commercial interest caught along the Spanish coasts. In total, 601 individuals belonging to eight tuna species, and one species of the Corypheanidae family, were examined for the presence of MPs in their stomachs. Fish were collected from 9 different locations along the Spanish coasts by commercial fishers. A total of 170 MPs were extracted from the fish stomach of 75 individuals. The number of particles present in the stomach ranged from 1 to 20 (mean 0.3± 1.2 SD MPs per individual). The species with the highest amount of MPs was Auxix rochei whereas the species that did not present any MPs was Coryphaena hippurus, the only species not belonging to the tuna group. In terms of location, the highest ratio of MPs (71%) was found in the fish collected from Azohia, and the lowest in Mazagon (7%). In general, the fish that ingested more MPs were those caught from sites that were closer to the coasts (Canarias Islands stations and Azohia). No correlation between the number of ingested MPs and the size and weight of the fish were detected nor for the whole sample nor for each species separately. Analyzing the MPs in terms of colour, green colour MPs were the most dominant (52%) followed by blue colour (25%). Analyzing the MPs in terms of size, 11 categories were considered and the most dominant size was 0-0.5 micron. Fibers were excluded from the analysis because no protocol was adopted to prevent their contamination. Furthermore, 100% of the MPs found were fragments. The data did not show a high presence of MPs in the analyzed study areas. A bias could probably be due to the method used, allowing to loose a certain quantity of very small microplastics, and also to ethological and biological factors of the species, as documented by other studies: very often MPs do not accumulate in the stomach and are expelled from the individual.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.