8 resultados para atomic force microscopy (AFM)
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The concern of this work is to present the characterization of blue emitting GaN-based LED structures by means of Atomic Force Microscopy. Here we show a comparison among the samples with different dislocation densities, in order to understand how the dislocations can affect the surface morphology. First of all we have described the current state of art of the LEDs in the present market. Thereafterwards we have mentioned in detail about the growth technique of LED structures and the methodology of the characterization employed in our thesis. Finally, we have presented the details of the results obtained on our samples studied, followed by discussions and conclusions. L'obiettivo di questa tesi é quello di presentare la caratterizzazione mediante Microscopia a Forza Atomica di strutture di LED a emissione di luce blu a base di nitruro di gallio (GaN). Viene presentato un confronto tra campioni con differente densità di dislocazioni, allo scopo di comprendere in che modo la presenza di dislocazioni influisce sulla morfologia della superficie. Innanzitutto, viene descritto il presente stato dell'arte dei LED. Successivamente, sono forniti i dettagli riguardanti la tecnica di crescita delle strutture dei LED e il metodo di caratterizzazione adottato. Infine, vengono mostrati e discussi i risultati ottenuti dallo studio dei campioni, seguiti dalle conclusioni.
Resumo:
Amorphous semiconductors are important materials as they can be deposited by physical deposition techniques on large areas and even on plastic substrates. Therefore, they are crucial for transistors in large active matrices for imaging and transparent wearable electronics. The most widely applied candidate for amorphous thin film transistors production is Indium Gallium Zinc Oxide (IGZO). It is attracting much interest because of its optical transparency, facile processing by sputtering deposition and notable improved charge carrier mobility with respect to hydrogenated amorphous silicon a-Si:H. Degradation of the device and long-term performance issues have been observed if IGZO thin film transistors are subjected to electrical stress, leading to a modification of IGZO channel properties and subthreshold slope. Therefore, it is of great interest to have a reliable and precise method to study the conduction band tail, and the density of states in amorphous semiconductors. The aim of this thesis is to develop a local technique using Kelvin Probe Force Microscopy to study the evolution of IGZO DOS properties. The work is divided into three main parts. First, solutions to the non-linear Poisson-Boltzmann equation of a metal-insulator-semiconductor junction describing the charge accumulation and its relation to DOS properties are elaborated. Second macroscopic techniques such as capacitance voltage (CV) measurements and photocurrent spectroscopy are applied to obtain a non-local estimate of band-tail DOS properties in thin film transistor samples. The third part of my my thesis is dedicated to the KPFM measurements. By fitting the data to the developed numerical model, important parameters describing the amorphous conduction band tail are obtained. The results are in excellent agreement with the macroscopic characterizations. KPFM result is comparable also with non-local optoelectronic characterizations, such as photocurrent spectroscopy.
Resumo:
Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.
Resumo:
Questo lavoro costituisce un'interfaccia tra la fisica dei materiali e la biologia; sfruttando le particolari proprietà del polimero conduttore poli(3,4-etilenediossitiofene) drogato con poli(stirene sulfonato) (PSS), o PEDOT:PSS, sono stati sviluppati e realizzati substrati per colture cellulari. Tale composto è infatti un polimero organico biocompatibile, caratterizzato da proprietà fisiche che ben si prestano ad applicazioni in campo biologico. Vengono inizialmente descritte le caratteristiche generali e gli schemi di classificazione dei polimeri, per analizzare quindi in dettaglio i polimeri conduttori e la loro modalità di drogaggio. Si presenta quindi il PEDOT:PSS, del quale vengono descritte le proprietà, in particolare ci si sofferma sulle quelle termiche, meccaniche ed elettriche. Il primo capitolo si conclude con la presentazione delle applicazioni bioelettroniche del PEDOT:PSS, illustrando le principali applicazioni nella ricerca biologica e descrivendo le caratteristiche che ne hanno fatto uno dei composti più utilizzati per questo tipo di applicazioni. Nel secondo capitolo, per la parte sperimentale, sono stati descritti approfonditamente gli strumenti e i materiali utilizzati; in particolare vengono spiegati dettagliatamente il procedimento di spin-coating per la produzione di film sottili e le tecniche AFM (Atomic Force Microscopy) per l'analisi della morfologia superficiale. Nel terzo capitolo vengono esposte le tecniche sperimentali impiegate: è stata sviluppata una procedura di produzione ripetibile, grazie alla quale sono stati realizzati dei campioni, per i quali poi è stata misurata la rugosità. I risultati conseguiti sono stati infine correlati con l'analisi della proliferazione cellulare, illustrata chiaramente dalle immagini ottenute al microscopio ottico, che rivelano l'adesione e la moltiplicazione cellulare sui substrati di PEDOT:PSS.
Resumo:
Nel primo capitolo viene introdotto lo studio eff�ettuato e descritto un metodo di misure successivo alla caratterizzazione della super�ficie. Nel secondo capitolo vengono descritti i campioni analizzati e, nello speci�fico, la crescita attraverso MaCE dei nanofi�li di silicio. Nel terzo capitolo viene descritto lo strumento AFM utilizzato e la teoria della caratterizzazione alla base dello studio condotto. Nella quarta sezione vengono descritti i risultati ottenuti mentre nelle conclusioni viene tratto il risultato dei valori ottenuti di RMS roughness e roughness exponent.
Resumo:
In the last years technologies related to photovoltaic energy have rapidly developed and the interest on renewable energy power source substantially increased. In particular, cost reduction and appropriate feed-in tariff contributed to the increase of photovoltaic installation, especially in Germany and Italy. However, for several technologies, the observed experimental efficiency of solar cells is still far from the theoretical maximum efficiency, and thus there is still room for improvement. In this framework the research and development of new materials and new solar devices is mandatory. In this thesis the morphological and optical properties of thin films of nanocrystalline silicon oxynitride (nc-SiON) have been investigated. This material has been studied in view of its application in Si based heterojunction solar cells (HIT). Actually, a-Si:H is used now in these cells as emitter layer. Amorphous SiO_x N_y has already shown excellent properties, such as: electrical conductivity, optical energy gap and transmittance higher than the ones of a-Si:H. Nc-SiO_x N_y has never been investigated up to now, but its properties can surpass the ones of amorphous SiON. The films of nc-SiON have been deposited at the University of Konstanz (Germany). The properties of these films have been studied using of atomic force microscopy and optical spectroscopy methods. This material is highly complex as it is made by different coexisting phases. The main purpose of this thesis is the development of methods for the analyses of morphological and optical properties of nc-SiON and the study of the reliability of those methods to the measurement of the characteristics of these silicon films. The collected data will be used to understand the evolution of the properties of nc-SiON, as a function of the deposition parameters. The results here obtained show that nc-SiON films have better properties with respect to both a-Si:H and a-SiON, i. e. higher optical band-gap and transmittance. In addition, the analysis of the variation of the observed properties as a function of the deposition parameters allows for the optimization of deposition conditions for obtaining optimal efficiency of a HIT cell with SiON layer.
Resumo:
Il presente lavoro di tesi propone uno studio approfondito di proprietà morfologiche e di trasporto di carica di film sottili di SiOxNy amorfi (a-SiOxNy) e nanocristallini (nc-SiOxNy), che trovano importanti applicazioni in celle fotovoltaiche ad eterogiunzione in silicio, ad alta efficienza. Lo studio è condotto mediante caratterizzazione elettrica e morfologica attraverso tecniche di microscopia a forza atomica (AFM). Sono stati studiati campioni di a-SiOxNy cresciuti con tecnica PECVD (Plasma Enhanced Chemical Vapor Deposition), in cui è stata variata unicamente la distanza tra gli elettrodi durante la deposizione. Sono stati inoltre studiati campioni di nc-SiOxNy, cresciuti con PECVD con una differente percentuale di N2O come gas precursore e un differente tempo di annealing. In entrambi i casi si tratta di un materiale innovativo, le cui proprietà fisiche di base, nonostante le numerose applicazioni, sono ancora poco studiate. L'analisi morfologica, condotta mediante AFM e successiva analisi statistica delle immagini, ha permesso di determinare alcune proprietà morfologiche dei campioni. L’analisi statistica delle immagini è stata validata, dimostrandosi stabile e consistente per lo studio di queste strutture. Lo studio delle proprietà di trasporto è stato condotto mediante acquisizione di mappe di corrente con tecnica conductive-AFM. In questo modo si è ottenuta una mappa di conducibilità locale nanometrica, che permette di comprendere come avviene il trasporto nel materiale. L'analisi di questo materiale mediante tecniche AFM ha permesso di evidenziare che l'annealing produce nei materiali nanocristallini sia un clustering della struttura, sia un significativo aumento della conducibilità locale del materiale. Inoltre la distanza tra gli elettrodi in fase di deposizione ha un leggero effetto sulle dimensioni dei grani. È da notare inoltre che su questi campioni si sono osservate variazioni locali della conducibilità alla nanoscala. L’analisi delle proprietà dei materiali alla nanoscala ha contribuito alla comprensione più approfondita della morfologia e dei meccanismi di trasporto elettronico.
Resumo:
Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.