2 resultados para assembly development

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial robots are an inalienable part of modern automated production. Typical applications of robots include welding, painting, (dis)assembly, packaging, labeling, palletizing, pick and place and others. Many of that applications includes object manipulation. If the shape and position of the object are known in advance, it is possible to design the trajectory of the robot’s end-effector to take and place. Such a strategy is applicable for rigid objects and widely used in the manufacturing field. But flexible (deformable) objects can change their shape and position upon contact with the robot’s end-effector or environment. That is the reason why the general approach is unacceptable. It means that the robot can fail to grasp such an object and can’t place it in the desired position. This thesis has addressed the problem of cable manipulation by bilateral robotic setup for the industrial manufacturing of electrical switchgear. The considered solution is based on the idea of tensioned cable. If the cable was grasped by the ends and tensioned, it has a line shape. Since the position of the robot’s end-effectors known, the position of the cable is known as well. Such an approach is capable to place cable in cable ducts of switchgear. The considered solution has been tested experimentally on a real bilateral robotic setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.