1 resultado para area-preserving maps

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poset associahedra are a family of convex polytopes recently introduced by Pavel Galashin in 2021. The associahedron An is an (n-2)-dimensional convex polytope whose facial structure encodes the ways of parenthesizing an n-letter word (among several equivalent combinatorial objects). Associahedra are deeply studied polytopes that appear naturally in many areas of mathematics: algebra, combinatorics, geometry, topology... They have many presentations and generalizations. One of their incarnations is as a compactification of the configuration space of n points on a line. Similarly, the P-associahedron of a poset P is a compactification of the configuration space of order preserving maps from P to R. Galashin presents poset associahedra as combinatorial objects and shows that they can be realized as convex polytopes. However, his proof is not constructive, in the sense that no explicit coordinates are provided. The main goal of this thesis is to provide an explicit construction of poset associahedra as sections of graph associahedra, thus solving the open problem stated in Remark 1.5 of Galashin's paper.