11 resultados para applications in logistics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La geometria euclidea risulta spesso inadeguata a descrivere le forme della natura. I Frattali, oggetti interrotti e irregolari, come indica il nome stesso, sono più adatti a rappresentare la forma frastagliata delle linee costiere o altri elementi naturali. Lo strumento necessario per studiare rigorosamente i frattali sono i teoremi riguardanti la misura di Hausdorff, con i quali possono definirsi gli s-sets, dove s è la dimensione di Hausdorff. Se s non è intero, l'insieme in gioco può riconoscersi come frattale e non presenta tangenti e densità in quasi nessun punto. I frattali più classici, come gli insiemi di Cantor, Koch e Sierpinski, presentano anche la proprietà di auto-similarità e la dimensione di similitudine viene a coincidere con quella di Hausdorff. Una tecnica basata sulla dimensione frattale, detta box-counting, interviene in applicazioni bio-mediche e risulta utile per studiare le placche senili di varie specie di mammiferi tra cui l'uomo o anche per distinguere un melanoma maligno da una diversa lesione della cute.
Resumo:
L’obiettivo del progetto è stato quello di realizzare ed analizzare aggregati artificiali creati attraverso geopolimerizzazione e macro-incapsulazione di paraffina in aggregati leggeri espansi, discutendo i loro possibili impieghi nelle pavimentazioni stradali. Dopo un'accurata calibrazione delle miscele geopolimeriche, sono stati realizzati degli aggregati artificiali, in seguito caratterizzati in accordo con la norma UNI EN 10343, con l'intento di sostituire materiali stradali vergini. Contemporaneamente, sono stati prodotti aggregati leggeri impregnati di paraffina (PCM), in grado di cambiare fase una volta raggiunti all'incirca i 3 °C, e successivamente rivestiti da due strati di resina poliestere e polvere di granito, denominati PLA: sfruttandone le proprietà termiche, si è valutato il loro possibile utilizzo come soluzione anti-icing. L’ultima fase della ricerca è stata incentrata nella realizzazione di aggregati geopolimerici espansi e molto porosi che potessero contenere una elevata quantità di PCM, sostituendo l'argilla espansa utilizzata nella produzione degli PLA.
Resumo:
Con la crescita in complessità delle infrastrutture IT e la pervasività degli scenari di Internet of Things (IoT) emerge il bisogno di nuovi modelli computazionali basati su entità autonome capaci di portare a termine obiettivi di alto livello interagendo tra loro grazie al supporto di infrastrutture come il Fog Computing, per la vicinanza alle sorgenti dei dati, e del Cloud Computing per offrire servizi analitici complessi di back-end in grado di fornire risultati per milioni di utenti. Questi nuovi scenarii portano a ripensare il modo in cui il software viene progettato e sviluppato in una prospettiva agile. Le attività dei team di sviluppatori (Dev) dovrebbero essere strettamente legate alle attività dei team che supportano il Cloud (Ops) secondo nuove metodologie oggi note come DevOps. Tuttavia, data la mancanza di astrazioni adeguata a livello di linguaggio di programmazione, gli sviluppatori IoT sono spesso indotti a seguire approcci di sviluppo bottom-up che spesso risulta non adeguato ad affrontare la compessità delle applicazione del settore e l'eterogeneità dei compomenti software che le formano. Poichè le applicazioni monolitiche del passato appaiono difficilmente scalabili e gestibili in un ambiente Cloud con molteplici utenti, molti ritengono necessaria l'adozione di un nuovo stile architetturale, in cui un'applicazione dovrebbe essere vista come una composizione di micro-servizi, ciascuno dedicato a uno specifica funzionalità applicativa e ciascuno sotto la responsabilità di un piccolo team di sviluppatori, dall'analisi del problema al deployment e al management. Poichè al momento non si è ancora giunti a una definizione univoca e condivisa dei microservices e di altri concetti che emergono da IoT e dal Cloud, nè tantomento alla definzione di linguaggi sepcializzati per questo settore, la definzione di metamodelli custom associati alla produzione automatica del software di raccordo con le infrastrutture potrebbe aiutare un team di sviluppo ad elevare il livello di astrazione, incapsulando in una software factory aziendale i dettagli implementativi. Grazie a sistemi di produzione del sofware basati sul Model Driven Software Development (MDSD), l'approccio top-down attualmente carente può essere recuperato, permettendo di focalizzare l'attenzione sulla business logic delle applicazioni. Nella tesi viene mostrato un esempio di questo possibile approccio, partendo dall'idea che un'applicazione IoT sia in primo luogo un sistema software distribuito in cui l'interazione tra componenti attivi (modellati come attori) gioca un ruolo fondamentale.
Resumo:
Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.
Resumo:
The technology of Organic Light-Emitting Diodes has reached such a high level of reliability that it can be used in various applications. The required light emission efficiency can be achieved by transforming the triplet excitons into singlet states through Reverse InterSystem Crossing (RISC), which is the main process of a general mechanism called thermally activated delayed fluorescence (TADF). In this thesis, we theoretically analyzed two carbazole-benzonitrile (donor-acceptor) derivatives, 2,5-di(9H-carbazol-9-yl)benzonitrile (p-2CzBN) and 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN), and addressed the problem of how donor-acceptor (D-A) or donor-acceptor-donor (D-A-D) flexible molecular architectures influence the nature of the excited states and the emission intensity. Furthermore, we analyzed the RISC rates as a function of the conformation of the carbazole lateral groups, considering the first electronic states, S0, S1, T1 and T2, involved in TADF process. The two prototype molecules, p-2CzBN and 5CzBN, have a similar energy gap between the first singlet and triplet states (∆EST, a key parameter in the RISC rate), but different TADF performances. Therefore, other parameters must be considered to explain their different behavior. The oscillator strength of p-2CzBN, never tested as emitter in OLEDs, is similar to that of 5CzBN, which is an active TADF molecule. We also note that the presence of a second T2 triplet state, lower in energy than S1 only in 5CzBN, and the reorganization energies, associated with RISC processes involving T1 and T2, are important factors in differentiating the rates in p-2CzBN and 5CzBN. For p-2CzBN, the RISC rate from T2 to S1 is surprisingly higher than that from T1 to S1, in disagreement with El-Sayed rules, due to a large reorganization energy associated to the T1 to S1, process; while the contrary occurs for 5CzBN. These insights are important for designing new TADF emitters based on the benzo-carbazole architecture.
Resumo:
The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.
Resumo:
Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
Silicon-on-insulator (SOI) is rapidly emerging as a very promising material platform for integrated photonics. As it combines the potential for optoelectronic integration with the low-cost and large volume manufacturing capabilities and they are already accumulate a huge amount of applications in areas like sensing, quantum optics, optical telecommunications and metrology. One of the main limitations of current technology is that waveguide propagation losses are still much higher than in standard glass-based platform because of many reasons such as bends, surface roughness and the very strong optical confinement provided by SOI. Such high loss prevents the fabrication of efficient optical resonators and complex devices severely limiting the current potential of the SOI platform. The project in the first part deals with the simple waveguides loss problem and trying to link that with the polarization problem and the loss based on Fabry-Perot Technique. The second part of the thesis deals with the Bragg Grating characterization from again the point of view of the polarization effect which leads to a better stop-band use filters. To a better comprehension a brief review on the basics of the SOI and the integrated Bragg grating ends up with the fabrication techniques and some of its applications will be presented in both parts, until the end of both the third and the fourth chapters to some results which hopefully make its precedent explanations easier to deal with.