5 resultados para aorta
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Descrizione del metodo proposto da Stergiopulos N. per la stima della complianza arteriosa totale tramite misura della velocità d'onda in aorta.
Resumo:
La sinergia tra diverse aree scientifiche svolge oggi un ruolo preminente nella risoluzione di problematiche molto complesse: in ambito medico, un massiccio intervento delle scienze fisico-matematiche ha portato, grazie alla ricerca sulle proprietà subatomiche (NMR), sulla funzione elettromeccanica tissutale (pace-makers) e sulla biocompatibilità di materiali innovativi, ad un completo rinnovamento e miglioramento delle terapie tradizionali, delineando nuove strategie terapeutiche. In questo quadro di attiva collaborazione si colloca la ricerca in ambito biomeccanico cardiovascolare che, approfondendo la funzionalità del cuore e dei vasi in condizioni normali e patologiche, propone soluzioni terapeutiche alternative all'approccio farmacologico, impensabili fino a pochi anni fa. Uno di questi ambiti è l'insufficienza cardiaca: al ventricolo incapace di produrre l'energia necessaria alla perfusione ematica viene associato un sistema di pulsazione meccanica che riduce il carico durante l'eiezione ed aumenta la perfusione coronarica in diastole. Tuttavia, benché l'efficacia della contropulsazione intra-aortica sia riconosciuta da decenni, alcune problematiche rimangono irrisolte: l'inapplicabilità su pazienti aritmici, l'eccessiva sollecitazione meccanica in pazienti vasculopatici, la complessità e l'alto costo dell'apparecchiatura. Questo lavoro affronta la validazione e la caratterizzazione di una soluzione terapeutica alternativa, di tipo completamente passivo, il cui effetto non è basato sulla somministrazione di energia meccanica dall'esterno, attraverso la pulsazione, ma sull'adattamento di impedenza biomeccanica tra la sorgente elastica pulsatile (il ventricolo) ed il carico (l'aorta). Per verificare l'ipotesi funzionale è stato realizzato un sistema contrattile che simulasse diversi livelli di insufficienza ventricolare ed un sistema vascolare con resistenza idraulica ed elastanza variabili. Sono stati rilevati i parametri fisiologici (pressioni, flusso, potenza ed efficienza) nelle diverse condizioni di accoppiamento biomeccanico e si sono ripetuti i rilievi inserendo il dispositivo di contropulsazione passiva. La validazione sperimentale ha prodotto risultati coerenti con quanto atteso ed è stata indispensabile per l'ottenimento, da parte del Comitato Etico, dell'autorizzazione per la sperimentazione clinica del sistema in oggetto.
Resumo:
Progetto SCATh allo ZHAW. Il dipartimento di meccatronica (IMS) dell'Università di scienze applicate di Winterthur (ZHAW), ha partecipato attivamente al progetto SCATh concentrandosi principalmente sullo sviluppo, il condizionamento, e la modellizzazione di un sensore di flusso che fosse facilmente applicabile e di piccole dimensioni in modo da poter essere applicato su catetere e permettere la misura diretta della grandezza fisica sopracitata. All'interno della struttura universitaria è stato possibile inizialmente analizzare il fenomeno che sta alla base del sensore, utilizzando conoscenze già presenti in dispositivi quali l'anemometria a filo caldo, che sfruttano lo scambio di calore tra sensore (riscaldato) e fluido sanguigno. La realizzazione del circuito di condizionamento è stato il passo successivo, necessario sia per mantenere il sensore ad una temperatura voluta e sia per leggere i dati di flusso mediante una tensione in uscita. Una volta effettuato ciò si è proceduto alla calibrazione del sensore (relazione tra flusso e tensione) ed infine alla trasposizione del circuito su LTspice. Nell' Introduzione (Capitolo 1) verranno presentati tutti i concetti preliminari, ossia i principi fisici, necessari a comprendere il funzionamento del sensore. Dunque dopo una breve definizione di flusso (riferito a liquidi) saranno presentati i principi di trasmissione del calore con particolare attenzione riservata alla convezione. Infine, parte dello stesso capitolo sarà dedicata ad una descrizione anatomica dell'aorta e dei rami collaterali. Successivamente nel secondo capitolo verrà analizzato, sia dal punto di vista statico che dal punto di vista dinamico, il circuito di condizionamento, ossia la circuiteria che sta a valle del sensore. Questo circuito permette al sensore di acquisire talune caratteristiche fondamentali per la misura di velocità ed inoltre consente la trasduzione da variabile fisica (velocità del flusso) a variabile elettrica (Tensione). In questo capitolo verrà inoltre fornita una descrizione delle relazioni matematiche fondamentali che legano la temperatura del sensore, la velocità del flusso e la tensione in uscita. Una descrizione del set sperimentale utilizzato per raccogliere dati sarà presente nel terzo capitolo. Qui si troverà una descrizione di tutte le attrezzature utilizzate al fine di poter testare il funzionamento del sensore. Nel quarto capitolo verranno visualizzati i risultati ottenuti facendo riferimento ai test effettuati prima su acqua e successivamente su sangue (suino). Verrà inoltre trovata la curva di calibrazione che permetterà di trovare una relazione biunivoca tra velocità del flusso e tensione in uscita. Infine, nel quinto capitolo verrà proposto un modello del circuito di condizionamento ottenuto mediante LTspice. Mediante il modello sarà possibile simulare un flusso di una velocità voluta e seguire l'andamento della tensione e della temperatura del sensore.
Resumo:
La portata media cardiaca, (cardiac output “CO”) è un parametro essenziale per una buona gestione dei pazienti o per il monitoraggio degli stessi durante la loro permanenza nell’unità di terapia intensiva. La stesura di questo elaborato prende spunto sull’articolo di Theodore G. Papaioannou, Orestis Vardoulis, and Nikos Stergiopulos dal titolo “ The “systolic volume balance” method for the non invasive estimation of cardiac output based on pressure wave analysis” pubblicato sulla rivista American Journal of Physiology-Heart and Circulatory Physiology nel Marzo 2012. Nel sopracitato articolo si propone un metodo per il monitoraggio potenzialmente non invasivo della portata media cardiaca, basato su principi fisici ed emodinamici, che usa l’analisi della forma d’onda di pressione e un metodo non invasivo di calibrazione e trova la sua espressione ultima nell’equazione Qsvb=(C*PPao)/(T-(Psm,aorta*ts)/Pm). Questa formula è stata validata dagli autori, con buoni risultati, solo su un modello distribuito della circolazione sistemica e non è ancora stato validato in vivo. Questo elaborato si pone come obiettivo quello di un’analisi critica di questa formula per la stima della portata media cardiaca Qsvb. La formula proposta nell'articolo verrà verificata nel caso in cui la circolazione sistemica sia approssimata con modelli di tipo windkessel. Dallo studio svolto emerge il fatto che la formula porta risultati con errori trascurabili solo se si approssima la circolazione sistemica con il modello windkessel classico a due elementi (WK2) e la portata aortica con un’onda rettangolare. Approssimando la circolazione sistemica con il modello windkessel a tre elementi (WK3), o descrivendo la portata aortica con un’onda triangolare si ottengono risultati con errori non più trascurabili che variano dal 7%-9% nel caso del WK2 con portata aortica approssimata con onda triangolare ad errori più ampi del 20% nei i casi del WK3 per entrambe le approssimazioni della portata aortica.
Resumo:
Lo scopo di questa tesi è lo sviluppo di una protesi valvolare sensorizzata per la valutazione e il monitoraggio dei parametri funzionali della valvola e di conseguenza la realizzazione un prototipo di PHV (Prosthetic Heart Valve) che integri all’interno delle protesi valvolari in commercio una tecnologia utile alla realizzazione di queste specifiche. Il segnale di impedenza intravalvolare (IVI) è ottenuto grazie ad un sistema di elettrodi utili alla generazione di un campo elettrico locale e alla successiva registrazione della differenza di potenziale. Il lavoro sperimentale è stato suddiviso in due parti: una prima parte deputata alla scelta della posizione ottimale degli elettrodi rispetto ai lembi, al piano e all’anello valvolare, al fine di determinare due prototipi, ed una seconda parte in cui sono stati testati i prototipi in una situazione più fisiologica, cioè in un tratto di aorta bovina, ed è stata simulata una dinamica valvolare alterata. Il maggior segnale di impedenza riscontrato è stato ottenuto ponendo gli elettrodi ortogonalmente al cardine dei lembi valvolari e sovrapponendo elettrodo di eccitazione e ricezione al fine di ottenere un campo elettrico costante e ricezione puntuale della variazione del campo. Infine è stato riscontrato che il segnale di impedenza intravalvolare è in grado di riflettere alterazioni simulate dei lembi.