2 resultados para angular divergence

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To be able to interpret patterns of biodiversity it is important to understand the processes by which new species evolve and how closely related species remain reproductively isolated and ecologically differentiated. Divergence and differentiation can vary during speciation and it can be seen in different stages. Groups of closely related taxa constitute important case studies to understand species and new biodiversity formation. However, it is important to assess the divergence among them at different organismal levels and from an integrative perspective. For this purpose, this study used the brown seaweeds genus Fucus as a model to study speciation, as they constitute a good opportunity to study divergence at different stages. We investigated the divergence patterns in Fucus species from two marginal areas (northern Baltic Sea and the Tjongspollen area), based on phenetic, phylogenetic and biological taxonomical criteria that are respectively characterised by algal morphology, allele frequencies of five microsatellite loci and levels of secondary polyphenolic compounds called phlorotannins. The results from this study showed divergence at morphological and genetic levels to certain extent but complete lack of divergence at biochemical level (i.e. constitutive phlorotannin production) in the Baltic Sea or Norway. Morphological divergence was clearly evident in Tjongspollen (Norway) among putative taxa as they were identified in the field and this divergence corresponds with their neutral genetic divergence. In the Baltic, there are some distinguishable patterns in the morphology of the swedish and finnish individuals according to locality to certain extent but not among putative taxa within localities. Likewise, these morphological patterns have genetic correspondence among localities but not within each locality. At the biochemical level, measured by the phlorotannin contents there were neither evidence of divergence in Norway or the Baltic Sea nor any discernable aggregation pattern among or within localities. Our study have contributed with further understanding of the Baltic Sea Fucus system and its intriguingly rapid and recent divergence as well as of the Tjongspollen area systems where formally undescribed individuals have been observed for the first time; in fact they appear largely differentiated and they may well warrant a new species status. In current times, climate change threatens, peripheral ecosystems, biodiversity, and increased knowledge of processes generating and maintaining biodiversity in those ecosystems seem particularly important and needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to study the angular momentum of a sample of S0 galaxies. In the quest to understand whether the formation of S0 galaxies is more closely linked to that of ellipticals or that of spirals, our goal is to compare the amount of their specific angular momentum as a function of stellar mass with respect to spirals. Through kinematic comparison between these different classes of galaxies we aim to understand if a scenario of passive evolution, in which the galaxy’s gas is consumed and the star formation is quenched, can be considered as plausible mechanism to explain the transformation from spirals to S0s. In order to derive the structural and photometric parameters of galaxy sub-components we performed a bulge-disc decomposition of optical images using GALFIT. The stellar kinematic of the galaxies was measured using integral field spectroscopic data from CALIFA survey. The development of new original software, based on a Monte Carlo Markov Chain algorithm, allowed us to obtain the values of the line of sight velocity and velocity dispersion of disc and bulge components. The result that we obtained is that S0 discs have a distribution of stellar specific angular momentum that is in full agreement with that of spiral discs, so the mechanism of simple fading can be considered as one of the most important for transformation from spirals to S0s.