3 resultados para ammonia production
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
H2 demand is continuously increasing since its many relevant applications, for example, in the ammonia production, refinery processes or fuel cells. The Water Gas Shift (WGS) reaction (CO + H2O = CO2 + H2 DeltaH = -41.1 kJ.mol-1) is a step in the H2 production, reducing significantly the CO content and increasing the H2 one in the gas mixtures obtained from steam reforming. Industrially, the reaction is carried out in two stages with different temperature: the first stage operates at high temperature (350-450 °C) using Fe-based catalysts, while the second one is performed at lower temperature (190-250 °C) over Cu-based catalysts. However, recently, an increasing interest emerges to develop new catalytic formulations, operating in a single-stage at middle temperature (MTS), while maintaining optimum characteristics of activity and stability. These formulations may be obtained by improving activity and selectivity of Fe-based catalysts or increasing thermal stability of Cu-based catalysts. In the present work, Cu-based catalysts (Cu/ZnO/Al2O3) prepared starting from hydrotalcite-type precursors show good homogeneity and very interesting physical properties, which worsen by increasing the Cu content. Among the catalysts with different Cu contents, the catalyst with 20 wt.% of Cu represents the best compromise to obtain high catalytic activity and stability. On these bases, the catalytic performances seem to depend on both metallic Cu surface area and synergetic interactions between Cu and ZnO. The increase of the Al content enhances the homogeneity of the precursors, leading to a higher Cu dispersion and consequent better catalytic performances. The catalyst with 20 wt.% of Cu and a molar ratio M(II)/M(III) of 2 shows a high activity also at 250 °C and a good stability at middle temperature. Thus, it may be considered an optimum catalyst for the WGS reaction at middle temperature (about 300 °C). Finally, by replacing 50 % (as at. ratio) of Zn by Mg (which is not active in the WGS reaction), better physical properties were observed, although associate with poor catalytic performances. This result confirms the important role of ZnO on the catalytic performances, favoring synergetic interactions with metallic Cu.
Resumo:
The use of environmentally friendly products increased the interest in renewable resources as alternatives to petrochemical products. Polyhydroxyalkanoates (PHAs) are examples of such promising products, as they are biodegradable polymers with numerous potential applications. PHA production approach consists of using an open mixed microbial culture (MMC) and inexpensive feedstocks (waste or industry byproducts feedstock). The PHA process generally comprises three stages: (1) acidogenic fermentation (AF) stage (conversion of organic carbon into fermentation products); (2) culture selection stage (enrichment in PHA-storing organisms by applying Feast and Famine regime); and (3) PHA production stage (PHA accumulation up to the culture’s maximum capacity). AF of protein-rich residues results in ammonia-rich fermented streams, which can be presented as a challenge for the PHA production stage. The presence of ammonia during this stage may induce organisms to grow instead of producing PHAs. For this reason, the assessment of the effect of a high content of ammonia on PHA production it is the utmost importance. The main goal of the current project is to select a MMC enriched in PHA-accumulating organisms in conditions of high ammonia content and to evaluate the effects of ammonia presence during PHA accumulation. The culture was selected applying the Feast & Famine strategy, and fed, firstly, using a synthetic mixture of VFAs and later using a fermented stream obtained from the fermentation of protein-rich raw materials. The selected culture could accumulate up to 24% PHA per VSS with the synthetic mixture of VFAs and up to 29% for the real fermented stream. The PHA accumulation resulted in different production in the presence and absence of ammonia. Regarding to the synthetic feed, 59%wt. PHA (VSS basis) in the absence of ammonia, and 55%wt. (VSS basis) in the presence, were obtained. For the real feed, the PHA content was about 40%wt. (VSS basis) in both reactors.