2 resultados para adhesion forces
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La mancanza di procedure standard per la verifica delle strutture in compositi, al contrario dei materiali metallici, porta all’esigenza di una continua ricerca nel settore, al fine di ottenere risultati significativi che culminino in una standardizzazione delle procedure. In tale contesto si colloca la ricerca svolta per la stesura del presente elaborato, condotta presso il laboratorio DASML del TU Delft, nei Paesi Bassi. Il materiale studiato è un prepreg (preimpregnated) costituito da fibre di carbonio (M30SC) e matrice epossidica (DT120) con la particolare configurazione [0°/90°/±45°/±45°/90°/0°]. L’adesivo utilizzato per l’incollaggio è di tipo epossidico (FM94K). Il materiale è stato assemblato in laboratorio in modo da ottenere i provini da testare, di tipo DCB, ENF e CCP. Due differenti qualità dello stesso materiale sono state ottenute, una buona ottenuta seguendo le istruzione del produttore, ed una povera ottenuta modificando il processo produttivo suggerito, che risulta in un incollaggio di qualità nettamente inferiore rispetto al primo tipo di materiale. Lo scopo era quello di studiare i comportamenti di entrambe le qualità sotto due diversi modi di carico, modo I o opening mode e modo II o shear mode, entrambi attraverso test quasi-statici e a fatica, così da ottenere risultati comparabili tra di essi che permettano in futuro di identificare se si dispone di un materiale di buona qualità prima di procedere con il progetto dell’intera struttura. L’approccio scelto per lo studio dello sviluppo della delaminazione è un adattamento della teoria della Meccanica della Frattura Lineare Elastica (LEFM)
Resumo:
Nowadays the medical field is struggling to decrease bacteria biofilm formation which leads to infection. Biomedical devices sterilization has not changed over a long period of time. This results in high costs for hospitals healthcare managements. The objective of this project is to investigate electric field effects and surface energy manipulation as solutions for preventing bacteria biofilm for future devices. Based on electrokinectic environments 2 different methods were tested: feasibility of electric gradient through mediums (DEP) reinforced by numerical simulations; and EWOD by the fabrication of golden interdigitated electrodes on silicon glass substrates, standard ~480 nm Teflon (PTFE) layer and polymeric gasket to contain the bacteria medium. In the first experiment quantitative analysis was carried out to achieve forces required to reject bacteria without considering dielectric environment limitations as bacteria and medium frequency dependence. In the second experiment applied voltages was characterized by droplets contact angle measurements and put to the live bacteria tests. The project resulted on promising results for DEP application due to its wide range of frequency that can be used to make a “general” bacteria rejecting; but in terms of practicality, EWOD probably have higher potential for success but more experiments are needed to verify if can prevent biofilm adhesion besides the Teflon non-adhesive properties (including limitations as Teflon breakthrough, layer sensitivity) at incubation times larger than 24 hours.