3 resultados para adducts

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is the result of the study of two reactions leading to the formation of important heterocyclic compounds of potential pharmaceutical interest. The first study concerns the reaction of (1,3)-dipolar cycloaddition between nitrones and activated olefins by hydrogen bond catalysis of thioureas derivatives leading to the formation of a five-membered cyclic adducts, an interesting and strategic synthetic intermediate, for the synthesis of benzoazepine. The second project wants to explore the direct oxidative C(sp3)-H α-alkylation of simple amides with subsequent addition of an olefin and cyclization in order to obtain the corresponding oxazine. Both reactions are still under development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multimodal biology activity of ergot alkaloids is known by humankind since middle ages. Synthetically modified ergot alkaloids are used for the treatment of various medical conditions. Despite the great progress in organic syntheses, the total synthesis of ergot alkaloids remains a great challenge due to the complexity of their polycyclic structure with multiple stereogenic centres. This project has developed a new domino reaction between indoles bearing a Michael acceptor at the 4 position and nitroethene, leading to potential ergot alkaloid precursors in highly enantioenriched form. The reaction was optimised and applied to a large variety of substrate with good results. Even if unfortunately all attempts to further modify the obtained polycyclic structure failed, it was found a reaction able to produce the diastereoisomer of the polycyclic product in excellent yields. The compounds synthetized were characterized by NMR and ESIMS analysis confirming the structure and their enantiomeric excess was determined by chiral stationary phase HPLC. The mechanism of the reaction was evaluated by DFT calculations, showing the formation of a key bicoordinated nitronate intermediate, and fully accounting for the results observed with all substrates. The relative and absolute configuration of the adducts were determined by a combination of NMR, ECD and computational methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.