5 resultados para acquisition procedures
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
Il rumore causato dagli aeromobili nelle varie operazioni aeroportuali è uno dei problemi più sentiti dalle popolazioni che risiedono nelle aree adiacenti gli aeroporti.Nonostante i progressi fatti dal punto di vista tecnologico, che hanno portato a una notevole riduzione del fenomeno, il continuo aumento della domanda di traffico aereo ha ridotto l’efficacia di queste migliorie tecniche, anche a causa di una scarsa pianificazione territoriale nel corso degli anni. Ci sono numerosi interventi possibili per ridurre l'inquinamento acustico, in questa tesi vengono analizzate in special modo le NAP e la loro applicazione al caso dell'aeroporto di Bologna.
Resumo:
In the current study, we analyze the effectiveness of an organosilane compound, 3-mercapto-propyl-tri-methoxy-silane (abbreviated PropS-SH), in the corrosion protection of fire-gilded bronzes. Firstly, the coating was applied on as-gilded bronze. Subsequently, it was also applied on pre-patinated bronze, because the substrate on which protective coatings are applied in real conservation interventions are corroded artifacts (cleaning procedures never remove all the corrosion products). Aiming to obtain results that simulate the situation of real artifacts, a dropping test that simulates outdoor exposure in runoff conditions (unsheltered areas of monuments) was employed in order to prepatinate the gilded bronze samples, which are the substrate for applying the protective coating. The preparation of the samples by applying the protective coating was performed in collaboration with the Corrosion Studies Centre “Aldo Daccò” from Ferrara University. After the artificial exposure cycles the samples underwent investigations through a variety of spectroscopic methods including SEM, Raman, FIB, AAS and color measurements. In order to evaluate the possible removal of the organosilane coating, protected samples were subjected to laser cleaning tests and characterized by SEM/EDS so as to assess the changes in composition and morphology of the treated surfaces. The laser cleaning treatment was performed at the Institute of Applied Physics “Nello Carrara” (CNR Sesto Fiorentino (FI)). The morphology and chemical composition of the samples was observed before and after the operation in order to obtain information about the fluence and type of laser which are best suited to the removal of this type of coating.
Resumo:
The development of procedures for the iridium catalyzed C-H borylation of 1-aryl pyrazolopyrimidines and 1-aryl indazoles is reported. Investigation on the activity of the catalyst revealed the combination of an iridium (I) precursor and tetramethylphenantroline as the best catalytic system. Moreover, the procedures are regioselective resulting in the selective borylation of different C-H bonds within the substrates. The application of C-H borylation to late stage functionalization is demonstrated: a biologically active compound in AstraZeneca's project underwent tandem borylation/oxidation reaction, in order to obtain a functionalized product containing an OH group.
Resumo:
A partire dalle caratteristiche chiave dell’inquinamento acustico, lo scopo della tesi è stato quello di valutare quantitativamente l’entità del rumore aeronautico prodotto dall'aeroporto Marconi e di analizzare le soluzioni tecniche e gestionali disponibili per definire misure adeguate alle caratteristiche infrastrutturali e operative dello scalo e capaci di mitigare il disturbo subito dalla popolazione. Si è tenuto conto delle profonde modificazioni in atto nel mondo dell’aviazione, il quale, avendo come obiettivo quello di fornire un servizio di trasporto sempre più sostenibile, efficace, competitivo e omogeneo sul territorio europeo, sollecita profonde innovazioni nei requisiti funzionali e tecnici. Inizialmente l’attenzione è stata rivolta alla descrizione del rumore aeronautico e del contesto in cui è inserito, soffermandosi sul concetto di sostenibilità di un’infrastruttura di trasporto. Si è proseguito con un'analisi dettagliata della normativa vigente, italiana ed europea, al fine di affrontare gli aspetti legislativi del problema e di delineare le line guida per la valutazione del rumore. Segue uno studio, dal punto di vista tecnico e infrastrutturale, dell’evoluzione della navigazione aerea e del concetto innovativo di performance based navigation, focalizzando l’interesse sul curved approach, procedura di avvicinamento non convenzionale. L'attenzione è stata, poi, dedicata alla descrizione del caso di studio e alla presentazione della metodologia usata. Mediante il supporto dell’INM, sono state determinate le curve isofoniche, quantificando la popolazione esposta a specifici livelli di rumore aeronautico per lo scenario consuntivo dell’anno 2015. Infine, sono state eseguite simulazioni future, sulla base delle previsioni di crescita del volume di traffico aereo, per definire un limite massimo per lo sfruttamento del sistema ILS in testata 30 e per valutare il beneficio generato dall’introduzione del curved approach.