1 resultado para XYZ compliant parallel mechanism

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevance of human joint models has been shown in the literature. They can help in diagnosis, in prostheses and ortheses design and in predicting the joints’ behavior. Recently a sequential approach for the modeling of the human diarthrodial joints composed of three steps has been proposed. At each step the role of some anatomical structures is considered. Starting from a limited number of structures, the model gets more and more sophisticated until all the components, both passive (articular surfaces, ligaments and tendons) and active (muscles), are incorporated in the final model. According to this procedure, the behavior of the human ankle during passive motion (no loads applied) has been previously modeled by a one degree of freedom 5-5 fully parallel mechanism. Starting from this model, the kinetostatic model of the human ankle joint that replicates its behavior when external loads are applied is developed. The anatomical and mechanical characteristics and the role of the passive structures are considered; a multifiber model is developed and an optimization criteria based on experimental data is proposed. Finally an application of the developed model to an amputated ankle is presented, together with the results obtained from the optimization of the geometrical and mechanical Parameters. Although some improvements can be achieved, the model is satisfactorily able to replicate the behavior of the human ankle subject to the anterior drawer and the inversion clinical tests applied in the neutral position.