2 resultados para Working with boys

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software Defined Networking along with Network Function Virtualisation have brought an evolution in the telecommunications laying out the bases for 5G networks and its softwarisation. The separation between the data plane and the control plane, along with having a decentralisation of the latter, have allowed to have a better scalability and reliability while reducing the latency. A lot of effort has been put into creating a distributed controller, but most of the solutions provided by now have a monolithic approach that reduces the benefits of having a software defined network. Disaggregating the controller and handling it as microservices is the solution to problems faced when working with a monolithic approach. Microservices enable the cloud native approach which is essential to benefit from the architecture of the 5G Core defined by the 3GPP standards development organisation. Applying the concept of NFV allows to have a softwarised version of the entire network structure. The expectation is that the 5G Core will be deployed on an orchestrated cloud infrastructure and in this thesis work we aim to provide an application of this concept by using Kubernetes as an implementation of the MANO standard. This means Kubernetes acts as a Network Function Virtualisation Orchestrator (NFVO), Virtualised Network Function Manager (VNFM) and Virtualised Infrastructure Manager (VIM) rather than just a Network Function Virtualisation Infrastructure. While OSM has been adopted for this purpose in various scenarios, this work proposes Kubernetes opposed to OSM as the MANO standard implementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nowadays the idea of injecting world or domain-specific structured knowledge into pre-trained language models (PLMs) is becoming an increasingly popular approach for solving problems such as biases, hallucinations, huge architectural sizes, and explainability lack—critical for real-world natural language processing applications in sensitive fields like bioinformatics. One recent work that has garnered much attention in Neuro-symbolic AI is QA-GNN, an end-to-end model for multiple-choice open-domain question answering (MCOQA) tasks via interpretable text-graph reasoning. Unlike previous publications, QA-GNN mutually informs PLMs and graph neural networks (GNNs) on top of relevant facts retrieved from knowledge graphs (KGs). However, taking a more holistic view, existing PLM+KG contributions mainly consider commonsense benchmarks and ignore or shallowly analyze performances on biomedical datasets. This thesis start from a propose of a deep investigation of QA-GNN for biomedicine, comparing existing or brand-new PLMs, KGs, edge-aware GNNs, preprocessing techniques, and initialization strategies. By combining the insights emerged in DISI's research, we introduce Bio-QA-GNN that include a KG. Working with this part has led to an improvement in state-of-the-art of MCOQA model on biomedical/clinical text, largely outperforming the original one (+3.63\% accuracy on MedQA). Our findings also contribute to a better understanding of the explanation degree allowed by joint text-graph reasoning architectures and their effectiveness on different medical subjects and reasoning types. Codes, models, datasets, and demos to reproduce the results are freely available at: \url{https://github.com/disi-unibo-nlp/bio-qagnn}.