2 resultados para Will to power
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The voltage profile of the catenary between traction substations (TSSs) is affected by the trolleybus current intake and by its position with respect to the TSSs: the higher the current requested by the bus and the further the bus from the TSSs, the deeper the voltage drop. When the voltage drops below 500V, the trolleybus is forced to decrease its consumption by reducing its input current. This thesis deals with the analysis of the improvements that the installation of an BESS produces in the operation of a particularly loaded FS of the DC trolleybus network of the city of Bologna. The stationary BESS is charged by the TSSs during off-peak times and delivers the stored energy when the catenary is overloaded alleviating the load on the TSSs and reducing the voltage drops. Only IMC buses are considered in the prospect of a future disposal of all internal combustion engine vehicles. These trolleybuses cause deeper voltage drops because they absorb enough current to power their traction motor and recharge the on board battery. The control of the BESS aims to keep the catenary voltage within the admissible voltage range and makes sure that all physical limitations are met. A model of FS Marconi Trento Trieste is implemented in Simulink environment to simulate its daily operation and compare the behavior of the trolleybus network with and without BESS. From the simulation without BESS, the best location of the energy storage system is deduced, and the battery control is tuned. Furthermore, from the knowledge of the load curve and the battery control trans-characteristic, it is formulated a prediction of the voltage distribution at BESS connection point. The prediction is then compared with the simulation results to validate the Simulink model. The BESS allows to decrease the voltage drops along the catenary, the Joule losses and the current delivered by the TSSs, indicating that the BESS can be a solution to improve the operation of the trolleybus network.
Resumo:
Microbial Fuel Cells (MFC) technology finds space as a promising technology as a green alternative power-generating device, by the possibility to convert organic matter directly into electricity by microbially catalysed reactions, especially for the potential of the simultaneous treatment of wastewaters. Despite the studies that were carried out over the decades, MFCs still provide insufficient power and current densities in order to be commercially attractive in the energy market. Scientific community today pursues two main strategies in order to increase the overall performance output of the MFC. The first is to support the cells with an external supercapacitor (SC), which is able to accept and deliver charge much faster than normal capacitors, thanks to the use of an electrostatic double-layer capacitance, in combination with pseudocapacitance. The second is to implement directly the SC into the MFC, by using carbon electrodes with high surface area, similar to the SC. Both strategies are eventually supported by the use of charge boosters, respect to the application of the MFC. Galvanostatic measures for the MFC and SCs are performed at different currents, alone and by integration of both devices. The SCs used have a capacitance respectively of 1F, 3F and 6F. Subsequently, a stack of MFCs is assembled and paired to a 3F SC, in order to power an ambient diffuser, able to spray at intervals with a can and a controller. In conclusion, the use of a SC in parallel to the MFCs increases the overall performance of the system. The SC remove the discharge current limit of the MFC and increases the energy and power delivered by the system, allowing it to power for a certain time the ambient diffuser successfully. The key factor highlighted by the final experiment was the insufficient charging time of the SC, resulting finally in a voltage that is inadequate to power the device. Further studies are therefore necessary to improve the performance of the MFCs.