9 resultados para Wiener-Hopf Equation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il primo modello matematico in grado di descrivere il prototipo di un sistema eccitabile assimilabile ad un neurone fu sviluppato da R. FitzHugh e J. Nagumo nel 1961. Tale modello, per quanto schematico, rappresenta un importante punto di partenza per la ricerca nell'ambito neuroscientifico delle dinamiche neuronali, ed è infatti capostipite di una serie di lavori che hanno puntato a migliorare l’accuratezza e la predicibilità dei modelli matematici per le scienze. L’elevato grado di complessità nello studio dei neuroni e delle dinamiche inter-neuronali comporta, tuttavia, che molte delle caratteristiche e delle potenzialità dell’ambito non siano ancora state comprese appieno. In questo lavoro verrà approfondito un modello ispirato al lavoro originale di FitzHugh e Nagumo. Tale modello presenta l’introduzione di un termine di self-coupling con ritardo temporale nel sistema di equazioni differenziali, diventa dunque rappresentativo di modelli di campo medio in grado di descrivere gli stati macroscopici di un ensemble di neuroni. L'introduzione del ritardo è funzionale ad una descrizione più realistica dei sistemi neuronali, e produce una dinamica più ricca e complessa rispetto a quella presente nella versione originale del modello. Sarà mostrata l'esistenza di una soluzione a ciclo limite nel modello che comprende il termine di ritardo temporale, ove tale soluzione non può essere interpretata nell’ambito delle biforcazioni di Hopf. Allo scopo di esplorare alcune delle caratteristiche basilari della modellizzazione del neurone, verrà principalmente utilizzata l’impostazione della teoria dei sistemi dinamici, integrando dove necessario con alcune nozioni provenienti dall’ambito fisiologico. In conclusione sarà riportata una sezione di approfondimento sulla integrazione numerica delle equazioni differenziali con ritardo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi presenta il criterio di regolarità di Wiener dell’ambito classico dell’operatore di Laplace ed in seguito alcune nozioni di teoria del potenziale e la dimostrazione del criterio nel caso dell’operatore del calore; in questa seconda sezione viene dedicata particolare attenzione alle formule di media e ad una diseguaglianza forte di Harnack, che risultano fondamentali nella trattazione dell’argomento centrale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'equazione di Klein-Gordon descrive una ampia varietà di fenomeni fisici come la propagazione delle onde in Meccanica dei Continui ed il comportamento delle particelle spinless in Meccanica Quantistica Relativistica. Recentemente, la forma dissipativa di questa equazione si è rivelata essere una legge di evoluzione fondamentale in alcuni modelli cosmologici, in particolare nell'ambito dei cosiddetti modelli di k-inflazione in presenza di campi tachionici. L'obiettivo di questo lavoro consiste nell'analizzare gli effetti del parametro dissipativo sulla dispersione nelle soluzioni dell'equazione d'onda. Saranno inoltre studiati alcuni tipici problemi al contorno di particolare interesse cosmologico per mezzo di grafici corrispondenti alle soluzioni fondamentali (Funzioni di Green).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La mia tesi parla di un attacco crittografico ad RSA, ideato da Wiener, basato sulle frazioni continue. Il primo capitolo riguarda RSA, il secondo spiega la teoria delle frazioni continue e nel terzo spiego l'attacco passo per passo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'obiettivo della tesi è studiare la dinamica di un random walk su network. Essa è inoltre suddivisa in due parti: la prima è prettamente teorica, mentre la seconda analizza i risultati ottenuti mediante simulazioni. La parte teorica è caratterizzata dall'introduzione di concetti chiave per comprendere i random walk, come i processi di Markov e la Master Equation. Dopo aver fornito un esempio intuitivo di random walk nel caso unidimensionale, tale concetto viene generalizzato. Così può essere introdotta la Master Equation che determina l'evoluzione del sistema. Successivamente si illustrano i concetti di linearità e non linearità, fondamentali per la parte di simulazione. Nella seconda parte si studia il comportamento di un random walk su network nel caso lineare e non lineare, studiando le caratteristiche della soluzione stazionaria. La non linearità introdotta simula un comportamento egoista da parte di popolazioni in interazioni. In particolare si dimostra l'esistenza di una Biforcazione di Hopf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa trattazione si studia la regolarità delle soluzioni viscose plurisubarmoniche dell’equazione di Monge-Ampère complessa. Si tratta di un’equazione alle derivate parziali del secondo ordine completamente non lineare il cui termine del secondo ordine è il determinante della matrice hessiana complessa di una funzione incognita a valori reali u. Il principale risultato della tesi è un nuovo controesempio di tipo Pogorelov per questa equazione. Si prova cioè l’esistenza di soluzioni viscose plurisubarmoniche e non classiche per un equazione di Monge-Ampère complessa.