5 resultados para Weighted graph matching
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.
Resumo:
La presenti tesi ha come obiettivo lo studio di due algoritmi per il rilevamento di anomalie all' interno di grafi random. Per entrambi gli algoritmi sono stati creati dei modelli generativi di grafi dinamici in modo da eseguire dei test sintetici. La tesi si compone in una parte iniziale teorica e di una seconda parte sperimentale. Il secondo capitolo introduce la teoria dei grafi. Il terzo capitolo presenta il problema del rilevamento di comunità. Il quarto capitolo introduce possibili definizioni del concetto di anomalie dinamiche e il problema del loro rilevamento. Il quinto capitolo propone l' introduzione di un punteggio di outlierness associato ad ogni nodo sulla base del confronto tra la sua dinamica e quella della comunità a cui appartiene. L' ultimo capitolo si incentra sul problema della ricerca di una descrizione della rete in termini di gruppi o ruoli sulla base della quale incentrare la ricerca delle anomalie dinamiche.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
Il lavoro che ho sviluppato presso l'unità di RM funzionale del Policlinico S.Orsola-Malpighi, DIBINEM, è incentrato sull'analisi dati di resting state - functional Magnetic Resonance Imaging (rs-fMRI) mediante l'utilizzo della graph theory, con lo scopo di valutare eventuali differenze in termini di connettività cerebrale funzionale tra un campione di pazienti affetti da Nocturnal Frontal Lobe Epilepsy (NFLE) ed uno di controlli sani. L'epilessia frontale notturna è una peculiare forma di epilessia caratterizzata da crisi che si verificano quasi esclusivamente durante il sonno notturno. Queste sono contraddistinte da comportamenti motori, prevalentemente distonici, spesso complessi, e talora a semiologia bizzarra. L'fMRI è una metodica di neuroimaging avanzata che permette di misurare indirettamente l'attività neuronale. Tutti i soggetti sono stati studiati in condizioni di resting-state, ossia di veglia rilassata. In particolare mi sono occupato di analizzare i dati fMRI con un approccio innovativo in campo clinico-neurologico, rappresentato dalla graph theory. I grafi sono definiti come strutture matematiche costituite da nodi e links, che trovano applicazione in molti campi di studio per la modellizzazione di strutture di diverso tipo. La costruzione di un grafo cerebrale per ogni partecipante allo studio ha rappresentato la parte centrale di questo lavoro. L'obiettivo è stato quello di definire le connessioni funzionali tra le diverse aree del cervello mediante l'utilizzo di un network. Il processo di modellizzazione ha permesso di valutare i grafi neurali mediante il calcolo di parametri topologici che ne caratterizzano struttura ed organizzazione. Le misure calcolate in questa analisi preliminare non hanno evidenziato differenze nelle proprietà globali tra i grafi dei pazienti e quelli dei controlli. Alterazioni locali sono state invece riscontrate nei pazienti, rispetto ai controlli, in aree della sostanza grigia profonda, del sistema limbico e delle regioni frontali, le quali rientrano tra quelle ipotizzate essere coinvolte nella fisiopatologia di questa peculiare forma di epilessia.
Resumo:
Negli ultimi anni si è assistito al considerevole aumento della disponibilità di dati GPS e della loro precisione, dovuto alla diffusione e all’evoluzione tecnologica di smartphone e di applicazioni di localizzazione. Il processo di map-matching consiste nell’integrare tali dati - solitamente una lista ordinata di punti, identificati tramite coordinate geografiche ricavate mediante un sistema di localizzazione, come il GPS - con le reti disponibili; nell’ambito dell’ingegneria dei trasporti, l’obiettivo è di identificare il percorso realmente scelto dall’utente per lo spostamento. Il presente lavoro si propone l’obiettivo di studiare alcune metodologie di map-matching per l’identificazione degli itinerari degli utenti, in particolare della mobilità ciclabile. Nel primo capitolo è esposto il funzionamento dei sistemi di posizionamento e in particolare del sistema GPS: ne sono discusse le caratteristiche, la suddivisione nei vari segmenti, gli errori di misurazione e la cartografia di riferimento. Nel secondo capitolo sono presentati i vari aspetti del procedimento di map-matching, le sue principali applicazioni e alcune possibili classificazioni degli algoritmi di map-matching sviluppati in letteratura. Nel terzo capitolo è esposto lo studio eseguito su diversi algoritmi di map-matching, che sono stati testati su un database di spostamenti di ciclisti nell’area urbana di Bologna, registrati tramite i loro smartphone sotto forma di punti GPS, e sulla relativa rete. Si analizzano altresì i risultati ottenuti in un secondo ambiente di testing, predisposto nell’area urbana di Catania, dove sono state registrate in modo analogo alcune tracce di prova, e utilizzata la relativa rete. La comparazione degli algoritmi è eseguita graficamente e attraverso degli indicatori. Vengono inoltre proposti e valutati due algoritmi che forniscono un aggiornamento di quelli analizzati, al fine di migliorarne le prestazioni in termini di accuratezza dei risultati e di costo computazionale.