6 resultados para Weighted Corner Sobolev Spaces
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main task of this work is to present a concise survey on the theory of certain function spaces in the contexts of Hörmander vector fields and Carnot Groups, and to discuss briefly an application to some polyharmonic boundary value problems on Carnot Groups of step 2.
Resumo:
In questa tesi cercherò di analizzare le funzioni di Sobolev su R}^{n}, seguendo le trattazioni Measure Theory and Fine Properties of Functions di L.C. Evans e R.F.Gariepy e l'elaborato Functional Analysis, Sobolev Spaces and Partial Differential Equations di H. Brezis. Le funzioni di Sobolev si caratterizzano per essere funzioni con le derivate prime deboli appartenenti a qualche spazio L^{p}. I vari spazi di Sobolev hanno buone proprietà di completezza e compattezza e conseguentemente sono spesso i giusti spazi per le applicazioni di analisi funzionale. Ora, come vedremo, per definizione, l'integrazione per parti è valida per le funzioni di Sobolev. È, invece, meno ovvio che altre regole di calcolo siano allo stesso modo valide. Così, ho inteso chiarire questa questione di carattere generale, con particolare attenzione alle proprietà puntuali delle funzioni di Sobolev. Abbiamo suddiviso il lavoro svolto in cinque capitoli. Il capitolo 1 contiene le definizioni di base necessarie per la trattazione svolta; nel secondo capitolo sono stati derivati vari modi di approssimazione delle funzioni di Sobolev con funzioni lisce e sono state fornite alcune regole di calcolo per tali funzioni. Il capitolo 3 darà un' interpretazione dei valori al bordo delle funzioni di Sobolev utilizzando l'operatore Traccia, mentre il capitolo 4 discute l' estensione su tutto R^{n} di tali funzioni. Proveremo infine le principali disuguaglianze di Sobolev nel Capitolo 5.
Resumo:
La tesi propone alcuni esempi di link fibrati in spazi lenticolari. Sfruttando la compatibilità fra le mosse di chirurgia intera e la nozione di open book decomposition, si ricava un esempio di link fibrato prima in L(p,1), per poi generalizzarlo a L(p,q). Si conclude determinando una struttura di contatto equivalente alla open book relativa agli spazi del tipo L(p,1).
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
Cities are key locations where Sustainability needs to be addressed at all levels, as land is a finite resource. However, not all urban spaces are exploited at best, and land developers often evaluate unused, misused, or poorly-designed urban portions as impracticable constraints. Further, public authorities lose the challenge to enable and turn these urban spaces into valuable opportunities where Sustainable Urban Development may flourish. Arguing that these spatial elements are at the centre of SUD, the paper elaborates a prototype in the form of a conceptual strategic planning framework, committed to an effective recycling of the city spaces using a flexible and multidisciplinary approach. Firstly, the research focuses upon a broad review of Sustainability literature, highlighting established principles and guidelines, building a sound theoretical base for the new concept. Hence, it investigates origins, identifies and congruently suggests a definition, characterisation and classification for urban “R-Spaces”. Secondly, formal, informal and temporary fitting functions are analysed and inserted into a portfolio meant to enhance adaptability and enlarge the choices for the on-site interventions. Thirdly, the study outlines ideal quality requirements for a sustainable planning process. Then, findings are condensed in the proposal, which is articulated in the individuation of tools, actors, plans, processes and strategies. Afterwards, the prototype is tested upon case studies: Solar Community (Casalecchio di Reno, Bologna) and Hyllie Sustainable City Project, the latter developed via an international workshop (ACSI-Camp, Malmö, Sweden). Besides, the qualitative results suggest, inter alia, the need to right-size spatial interventions, separate structural and operative actors, involve synergies’ multipliers and intermediaries (e.g. entrepreneurial HUBs, innovation agencies, cluster organisations…), maintain stakeholders’ diversity and create a circular process open for new participants. Finally, the paper speculates upon a transfer of the Swedish case study to Italy, and then indicates desirable future researches to favour the prototype implementation.