6 resultados para Waves, Calming of.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
According to various studies, the effects of climate change will be a danger to ecosystems and the population, especially in coastal areas, increasing the risk of floods. Authorities are taking action to prevent future disasters using traditional engineering solutions. These solutions can have high environmental and economic costs, fixing the coastline, increasing the salinization of aquifers, and can be subject to failure mechanisms. For this reason, studies were made to use natural engineering solutions for coastal protection, instead of traditional solutions, to achieve the UN SDGs. Coastal ecosystems have the natural ability to repair and restore themselves, increasing soil elevation, and attenuating waves. One of these solutions is the Double Dyke System, consisting of creating a salt marsh between the first dyke and a second inland. The goal is to protect the coasts and to restore ecosystems. The purpose of this study is to compare the costs of natural engineering solutions with traditional ones. It is assumed that these solutions may be more effective and less expensive in the long run. For this evaluation, a suitability analysis of the polders in the Dutch Zeeland region to assess the costs and benefits under different SLR scenarios was made. A saline intrusion model was also created to analyze the effects of a salt marsh on the aquifers. From the analyzes conducted, the implementation of the DDS turns out to be the cheapest coastal defense system in all SLR scenarios. The presence of a salt marsh could also have a positive impact on the prevention of saline intrusion in the various scenarios considered. The DDS could have a positive economic and environmental impact in the long term, reducing the investment costs for coastal defense and bringing important benefits for the protection of man and nature. Despite the results, more studies are needed on the efficiency of this defense system and on the economic evaluation of non-marketable ecosystem services.
Resumo:
This dissertation presents a calibration procedure for a pressure velocity probe. The dissertation is divided into four main chapters. The first chapter is divided into six main sections. In the firsts two, the wave equation in fluids and the velocity of sound in gases are calculated, the third section contains a general solution of the wave equation in the case of plane acoustic waves. Section four and five report the definition of the acoustic impedance and admittance, and the practical units the sound level is measured with, i.e. the decibel scale. Finally, the last section of the chapter is about the theory linked to the frequency analysis of a sound wave and includes the analysis of sound in bands and the discrete Fourier analysis, with the definition of some important functions. The second chapter describes different reference field calibration procedures that are used to calibrate the P-V probes, between them the progressive plane wave method, which is that has been used in this work. Finally, the last section of the chapter contains a description of the working principles of the two transducers that have been used, with a focus on the velocity one. The third chapter of the dissertation is devoted to the explanation of the calibration set up and the instruments used for the data acquisition and analysis. Since software routines were extremely important, this chapter includes a dedicated section on them and the proprietary routines most used are thoroughly explained. Finally, there is the description of the work that has been done, which is identified with three different phases, where the data acquired and the results obtained are presented. All the graphs and data reported were obtained through the Matlab® routine. As for the last chapter, it briefly presents all the work that has been done as well as an excursus on a new probe and on the way the procedure implemented in this dissertation could be applied in the case of a general field.
Resumo:
The increase of railways near the urban areas is a significant cause of discomfort for inhabitants due to train-induced vibration and noise. Vibration characteristics can vary widely according to the train type: for high-speed trains, if train speed becomes comparable to the ground wave speed, the vibration level becomes significant; for freight trains, due to their heavier weight and lower speed, the vibration amplitudes are greater and propagate at a more considerable distance from the track; for urban tramways, although the vibration amplitude is relatively low, they can have a negative structural effect on the closest buildings [51]. Therefore, to dampen the vibration level, it is possible to carry out some interventions both on the track and the transmission path. This thesis aims to propose and numerically investigate a novel method to dampen the train-induced vibrations along the transmission path. The method is called "resonant filled-trench (RFT)" and consists of a combination of expanded polystyrene (EPS) geofoam to stabilize the trench wall against the collapse and drowned cylindrical embedded inclusions inside the geofoam, which act as a resonator, reflector, and attenuator. By means of finite element simulations, we show that up to 50% higher attenuation than the open trench is achievable after overcoming the resonance frequency of the inclusion, i.e., 35Hz, which covers the frequency contents of the train-induced vibration. Moreover, depending on the filling material used for the inclusions, trench depth can be reduced up to 17% compared to the open trench showing the same screening performance as the open trench. Also, an RFT with DS inclusion installed in dense sand soil shows a high hindrance performance (i.e., IL≥6dB) when the trench depth is larger than 0.5λ_R while it is 0.6λ_R for the open trench.
Resumo:
Tsunamis are rare events. However, their impact can be devastating and it may extend to large geographical areas. For low-probability high-impact events like tsunamis, it is crucial to implement all possible actions to mitigate the risk. The tsunami hazard assessment is the result of a scientific process that integrates traditional geological methods, numerical modelling and the analysis of tsunami sources and historical records. For this reason, analysing past events and understanding how they interacted with the land is the only way to inform tsunami source and propagation models, and quantitatively test forecast models like hazard analyses. The primary objective of this thesis is to establish an explicit relationship between the macroscopic intensity, derived from historical descriptions, and the quantitative physical parameters measuring tsunami waves. This is done first by defining an approximate estimation method based on a simplified 1D physical onshore propagation model to convert the available observations into one reference physical metric. Wave height at the coast was chosen as the reference due to its stability and independence of inland effects. This method was then implemented for a set of well-known past events to build a homogeneous dataset with both macroseismic intensity and wave height. By performing an orthogonal regression, a direct and invertible empirical relationship could be established between the two parameters, accounting for their relevant uncertainties. The target relationship is extensively tested and finally applied to the Italian Tsunami Effect Database (ITED), providing a homogeneous estimation of the wave height for all existing tsunami observations in Italy. This provides the opportunity for meaningful comparison for models and simulations, as well as quantitatively testing tsunami hazard models for the Italian coasts and informing tsunami risk management initiatives.
Resumo:
In this thesis, we explore constraints which can be put on the primordial power spectrum of curvature perturbations beyond the scales probed by anisotropies of the cosmic microwave background and galaxy surveys. We exploit present and future measurements of CMB spectral distortions, and their synergy with CMB anisotropies, as well existing and future upper limits on the stochastic background of gravitational waves. We derive for the first time phenomenological templates that fit small-scale bumps in the primordial power spectrum generated in multi-field models of inflation. By using such templates, we study for the first time imprints of primordial peaks on anisotropies and spectral distortions of the cosmic microwave background and we investigate their contribution to the stochastic background of gravitational waves. Through a Monte Carlo Markov Chain analysis we infer for the first time the constraints on the amplitude, the width and the location of such bumps using Planck and FIRAS data. We also forecast how a future spectrometer like PIXIE could improve FIRAS boundaries. The results derived in this thesis have implications for the possibility of primordial black holes from inflation.