3 resultados para Water barrier properties

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLA is a bio-based polymer that is obtained from renewable resources and it is very promising for a sustainable packaging manufacturing. However, its gas and vapour barrier properties are not enough to comply with the requirements of MAP packaging of fresh foods, which need specific concentration of water and oxygen to avoid spoilage and to keep the organoleptic properties unaltered throughout their shelf-life. The use of waxes from natural renewable sources such as plants (e.g., candelilla wax, carnauba wax, rice bran wax, sunflower wax) or animals (e.g., beeswax) could tackle down the permeation of water vapour through the packaging without affecting its bio-based content. The core of this work is developing wax-based coatings with enhanced thermo-mechanical properties so that they can undergo thermoforming and a proper adhesion to the PLA substrate can be ensured. Chemical modifications and crosslinking of waxes are performed to produce wax-based alkyd resins. The synthesised materials are characterised both by DSC and FTIR. Films of the wax-based alkyds are produced in order to assess their water vapour permeability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work has been conducted in order to determine the solubility and diffusion coefficients of different aromatic substances in two different grades of polylactic acid (PLA), Amorphous (PDLLA) and Crystalline (PLLA); in particular the focus is on the following terpenes: Linalool, α-Pinene, β-Citronellol and L-Linalool. Moreover, further analyses have been carried out with the aim to verify if the use of neat crystalline PLA, (PLLA), a chiral substrate, may lead to an enantioenrichment of absorbed species in order to use it as membrane in enantioselective processes. The other possible applications of PLA, which has aroused interest in carry out the above-mentioned work, concerns its use in food packaging. Therefore, it is interesting and also very important, to evaluate the barrier properties of PLA, focusing in particular on the transport and absorption of terpenes, by the packaging and, hence, by the PLA. PLA films/slabs of one-millimeter thickness and with square shape, were prepared through the Injection Molding process. On the resulting PLA films heat pretreatment processes of normalizing were then performed to enhance the properties of the material. In order to evaluate solubility and diffusion coefficient of the different penetrating species, the absorption kinetics of various terpenes, in the two different types of PLA, were determined by gravimetric methods. Subsequently, the absorbed liquid was extracted with methanol (MeOH), non- solvent for PLA, and the extract analyzed by the use of High Performance Liquid Chromatography (HPLC), in order to evaluate its possible enantiomeric excess. Moreover, PLA films used were subjected to differential scanning calorimetry (DSC) which allowed to measure the glass transition temperature (Tg) and to determine the degree of crystallinity of the polymer (Xc).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of use of membranes is wide and ranges from the automotive industry to biomedical uses. Many formulations and compositions find a niche where they are able to improve efficiency, running cost and quality of the product. The aim of this research is to expand GVS’s product portfolio introducing a new membrane formulation. A series of additives were researched and evaluated, adding them to the membrane solutions, which were then cast and characterised using techniques like Scanning Electron Microscopy (SEM), poroscopy, FT-IT ATR and measurements like Water Break Through (WBT), Air Flow (AF), thickness. This study ultimately focused on one additive, which effect on the membranes was studied in various compositions. Interesting insights were also collected on the stability of the polymer solutions over time, which was found to change the membrane properties significantly, mainly affecting airflow and water breakthrough. Properties of the membranes were studied to find possible correlations to the amount of additive. The additive seems however to change the membrane porometry considerably depending on the time of immersion in the water bath. A new procedure to yield uniform unsupported polymeric membranes for tensile tests was developed. The additive was found to reduce elongation at break and decrease tensile strength of the membranes, possibly hinting toward plasticization of the product.