5 resultados para WIDE-RANGE CURRENT MEASUREMENT

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their capability of merging the properties of metals and conventional polymers, Conducting Polymers (CPs) are a unique class of carbon-based materials capable of conducting electrical current. A conjugated backbone is the hallmark of CPs, which can readily undergo reversible doping to different extents, thus achieving a wide range of electrical conductivities, while maintaining mechanical flexibility, transparency and high thermal stability. Thanks to these inherent versatility and attracting properties, from their discovery CPs have experienced incessant widespread in a great plethora of research fields, ranging from energy storage to healthcare, also encouraging the spring and growth of new scientific areas with highly innovative content. Nowadays, Bioelectronics stands out as one of the most promising research fields, dealing with the mutual interplay between biology and electronics. Among CPs, the polyelectrolyte complex poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), especially in the form of thin films, has been emphasized as ideal platform for bioelectronic applications. Indeed, in the last two decades PEDOT:PSS has played a key role in the sensing of bioanalytes and living cells interfacing and monitoring. In the present work, development and characterization of two kinds of PEDOT:PSS-based devices for applications in Bioelectronics are discussed in detail. In particular, a low-cost amperometric sensor for the selective detection of Dopamine in a ternary mixture was optimized, taking advantage of the electrocatalytic and antifouling properties that render PEDOT:PSS thin films appealing tools for electrochemical sensing of bioanalytes. Moreover, the potentialities of this material to interact with live cells were explored through the fabrication of a microfluidic trapping device for electrical monitoring of 3D spheroids using an impedance-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductive polymers (CPS) are a class of carbon-based materials, capable of conducting electric current, characterized by metallic properties in combination with the intrinsic properties of conventional polymers. The structural model of the CP consists of a system of double π-conjugated on the backbone (polyene structure) which can easily undergo reversible doping reaching a wide range of conductivity. Thanks to their versatility and peculiar properties (mechanical flexibility, biocompatibility, transparency, ease of chemical functionalization, high thermal stability), CPS have revolutionized the science of materials giving rise to Organic Bioelectronics, the discipline resulting from the convergence between biology and electronics. The Poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT: PSS), complex polyelectrolyte, in the form of a thin film, currently represents the reference standard in applications concerning Bioelectronics. In this project, two types of electrochemical sensors ink-jet printed on a flexible polymeric substrate, the polyethylene terephthalate, have been developed and characterized. The Drop on Demand (DOD) inkjet technology has allowed to control the positioning of fluid volumes of the order of picoliters with an accuracy of ± 25μm. This resulted in the creation of amperometric sensors and organic electrochemical transistors (OECT) all-PEDOT: PSS with high reproducibility. The sensors have been used for the determination of Ascorbic Acid (AA) which is currently considered an important benchmark in the field of sensors. In Cyclic Voltammetry, the amperometric sensor has detected AA at potentials less than 0.2 V vs. SCE thanks to the electrocatalytic properties of the PEDOT: PSS. On the other hand, the OECT detected AA concentrations equal to 10 nanomolar in Chronoamperometry. Furthermore, a promising new generation of all-printed OECTS, consisting of silver metal contacts, has been created. Preliminary results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global population growth reflects how humans increasingly exploited Earth's resources. Urbanization develops along with anthropization. It is estimated that nearly 60% of the world's population lives in urban areas, which symbolize the denaturalized dimension of current modernity. Cities are artificial ecosystems that suffer most from environmental issues and climate change. The Urban Heat Island (UHI) effect is a common microclimatic phenomenon affecting cities, which causes considerable differences between urban and rural areas temperatures. Among the driving factors, the lack of vegetation in urban settlements can damage both humans and the environment (health diseases, heat waves caused deaths, biodiversity loss, and so on). As the world continues to urbanize, sustainable development increasingly depends on successful management of urban areas. To enhance cities’ resilience, Nature-based Solutions (NbSs), are defined as an umbrella concept that encompasses a wide range of ecosystem-based approaches and actions to climate change adaptation (CCA) and disaster risk reduction (DRR). This paper analyzes a 15-days study on air temperature trends carried out in Isla, a small locality in the Maltese archipelago, and proposes Nature-based Solutions-characterized scenarios to mitigate the Urban Heat Island effect the Mediterranean city is affected by. The results demonstrates how in some areas where vegetation is present, lower temperatures are recorded than in areas where vegetation is absent or scarce. It also appeared that in one location, the specific type of vegetation does not contribute to high temperature mitigation, whereas in another one, different environmental parameters can influence the measurements. Among the case-specific Nature-based Solutions proposed there are vertical greening (green wall, façades, ground based greening, etc.), tree lines, green canopy, and green roofs.