8 resultados para W280 Interactive and Electronic Design

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to give a general view of pavement types all over the world, by showing the different characteristics of each one and its different life steps starting from construction, passing by maintenance and arriving until recycling phase. The flexible pavement took the main part of this work because it has been used in the last part of this thesis to design a project of a rural road. This project is located in the province of Bologna-Italy (‘Comune di Argelato’, 26 km in the north of Bologna), and has 5677, 81 m of length. A pavement design was made using the program BISAR 3.0 and a fatigue life study was made, also, in order to estimate the number of loads (in terms of heavy vehicles axle) to cause road’s failure . An alignment design was made for this project and a safety study was established in order to check if the available sight distance at curves respects the safety norms or not, by comparing it to the stopping sight distance. Different technical sheets are demonstrated and several cases are discussed in order to clarify the main design principles and underline the main hazardous cases to be avoided especially at intersection. This latter, its type’s choice depends on several factors in order to make the suitable design according to the environmental data. At this part of the road, the safety is a primordial point due to the high accident rate in this zone. For this reason, different safety aspects are discussed especially at roundabouts, signalized intersections, and also some other common intersection types. The design and the safety norms are taken with reference to AASHTO (American Association of State Highway and Transportation Officials), ACT (Transportation Association of Canada), and also according to Italian norms (Decreto Ministeriale delle Starde).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relatively young discipline of astronautics represents one of the scientifically most fascinating and technologically advanced achievements of our time. The human exploration in space does not offer only extraordinary research possibilities but also demands high requirements from man and technology. The space environment provides a lot of attractive experimental tools towards the understanding of fundamental mechanism in natural sciences. It has been shown that especially reduced gravity and elevated radiation, two distinctive factors in space, influence the behavior of biological systems significantly. For this reason one of the key objectives on board of an earth orbiting laboratory is the research in the field of life sciences, covering the broad range from botany, human physiology and crew health up to biotechnology. The Columbus Module is the only European low gravity platform that allows researchers to perform ambitious experiments in a continuous time frame up to several months. Biolab is part of the initial outfitting of the Columbus Laboratory; it is a multi-user facility supporting research in the field of biology, e.g. effect of microgravity and space radiation on cell cultures, micro-organisms, small plants and small invertebrates. The Biolab IEC are projects designed to work in the automatic part of Biolab. In this moment in the TO-53 department of Airbus Defence & Space (formerly Astrium) there are two experiments that are in phase C/D of the development and they are the subject of this thesis: CELLRAD and CYTOSKELETON. They will be launched in soft configuration, that means packed inside a block of foam that has the task to reduce the launch loads on the payload. Until 10 years ago the payloads which were launched in soft configuration were supposed to be structural safe by themselves and a specific structural analysis could be waived on them; with the opening of the launchers market to private companies (that are not under the direct control of the international space agencies), the requirements on the verifications of payloads are changed and they have become much more conservative. In 2012 a new random environment has been introduced due to the new Space-X launch specification that results to be particularly challenging for the soft launched payloads. The last ESA specification requires to perform structural analysis on the payload for combined loads (random vibration, quasi-steady acceleration and pressure). The aim of this thesis is to create FEM models able to reproduce the launch configuration and to verify that all the margins of safety are positive and to show how they change because of the new Space-X random environment. In case the results are negative, improved design solution are implemented. Based on the FEM result a study of the joins has been carried out and, when needed, a crack growth analysis has been performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is part of the fields of Material Physics and Organic Electronics and aims to determine the charge carrier density and mobility in the hydrated conducting polymer–polyelectrolyte blend PEDOT:PSS. This kind of material combines electronic semiconductor functionality with selective ionic transport, biocompatibility and electrochemical stability in water. This advantageous material properties combination makes PEDOT:PSS a unique material to build organic electrochemical transistors (OECTs), which have relevant application as amplifying transducers for bioelectronic signals. In order to measure charge carrier density and mobility, an innovative 4-wire, contact independent characterization technique was introduced, the electrolyte-gated van der Pauw (EgVDP) method, which was combined with electrochemical impedance spectroscopy. The technique was applied to macroscopic thin film samples and micro-structured PEDOT:PSS thin film devices fabricated using photolithography. The EgVDP method revealed to be effective for the measurements of holes’ mobility in hydrated PEDOT:PSS thin films, which resulted to be <μ>=(0.67±0.02) cm^2/(V*s). By comparing this result with 2-point-probe measurements, we found that contact resistance effects led to a mobility overestimation in the latter. Ion accumulation at the drain contact creates a gate-dependent potential barrier and is discussed as a probable reason for the overestimation in 2-point-probe measurements. The measured charge transport properties of PEDOT:PSS were analyzed in the framework of an extended drift-diffusion model. The extended model fits well also to the non-linear response in the transport characterization and results suggest a Gaussian DOS for PEDOT:PSS. The PEDOT:PSS-electrolyte interface capacitance resulted to be voltage-independent, confirming the hypothesis of its morphological origin, related to the separation between the electronic (PEDOT) and ionic (PSS) phases in the blend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the design of a pressure regulation system for space propulsion engines (electric and cold gas) has been performed. The Bang-Bang Control (BBC) method has been implemented through the open/close command on a solenoid valve, and the mass flow rate of the propellant has been fixed with suitable flow restrictors. At the beginning, research for the comparison between mechanical and electronic (for BBC) pressure regulators has been performed, which resulted in enough advantages for the selection of the second valve type. The major advantage is about the possibility to have a variable outlet pressure with a variable inlet pressure through a simple remote command, while in mechanical pressure regulators the ratio between inlet and outlet pressures must be mechanically settled. Different pressure control schemes have been analyzed, changing number of solenoid valves, flow restrictors and plenums. For each scheme the valve’s frequencies were evaluated with simplified mathematical models and with the use of simulators implemented on Python; the results obtained from those two methods matched quiet well. From all the schemes it was possible to observe varying frequency and duty cycle, for changes in different parameters. This results, after experimental checks, can be used to design the control system for a given total number of cycles that a specific solenoid valve can guarantee. Finally, tests were performed and it was possible to verify the goodness of the control system. Moreover from the tests it was possible to deduce some tips in order to optimize the running of the simulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles and electronic components inside the vehicle are becoming increasingly important. The software as well starts to have a significant impact on modern high-end cars therefore a careful validation process needs to be implemented with the aim of having a bug free product when it is released. The software complexity increases and thus also the testing phases is more demanding. Test can be troublesome and, in some cases, boring and easy. The intelligence can be moved in test definition and writing rather than on test execution. The aim of this document is to start the definition of an automatic modular testing system capable to execute test cycles on systems that interacts with the CAN networks and with DUT that can be touched with a robotic arm. The document defines a first version of the system, in particular the hardware interface part with the aim of taking logs and execute test in an automated fashion with the test engineer can have a higher focus on the test definition and analysis rather than execution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Child marriage is still a great issue in developing countries and even if the interventions to prevent it are having results, they are not enough to eliminate the problem. Among the strategies that seem to work most to fight child marriage, there is the empowerment of girls with information combined with education of parents and community. As smartphones are more accessible year after year in developing countries, this thesis wants to investigate if a mobile app could be effective in fighting child marriage and which characteristics such an app should have. The research was organized in four phases and used design and creation and case study methodologies. Firstly, the literature was analyzed and an initial design was proposed. Secondly, expert interviews were performed to gain feedback on the proposed design, and afterwards prototype was built. Thirdly, a case study in the Democratic Republic of Congo (DRC) was performed to test the prototype, gaining insights and improvements through group interviews with 26 girls aged 15-19. Finally, a first version of the app was developed and a second phase of the case study was run in the DRC to understand if the girls were able to use the app. This phase included 14 girls of which 6 had participated in the prototype testing and used questionnaires as a data generation method. The app was built following the Principles for Digital Development. Even if this app is built based on the case study in DRC is modular and easily adaptable to other contexts as it is not content-specific. It was shown that is worth continuing to study this topic and it was defined a conceptual framework for designing learning apps for developing countries, in particular, to fight child, early, and forced marriage.