6 resultados para Vision-based row tracking algorithm

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questo studio è l’implementazione di un sistema di navigazione autonomo in grado di calcolare la traiettoria di un mezzo aereo, noti che siano a priori dei punti di posizione detti waypoint. A partire da questa traiettoria, è possibile ottenere la sua rappresentazione in un codice che mette a disposizione immagini satellitari e ricavare le viste del terreno sorvolato in una serie di punti calcolati, in modo da garantire in ogni sequenza la presenza di elementi comuni rispetto a quella precedente. Lo scopo della realizzazione di questa banca dati è rendere possibili futuri sviluppi di algoritmi di navigazione basati su deep learning e reti neurali. Le immagini virtuali ottenute del terreno saranno in futuro applicate alla navigazione autonoma per agricoltura di precisione mediante droni. Per lo studio condotto è stato simulato un generico velivolo, con o senza pilota, dotato di una videocamera fissata su una sospensione cardanica a tre assi (gimbal). La tesi, dunque, introduce ai più comuni metodi di determinazione della posizione dei velivoli e alle più recenti soluzioni basate su algoritmi di Deep Learning e sistemi vision-based con reti neurali e segue in un approfondimento sul metodo di conversione degli angoli e sulla teoria matematica che ne sta alla base. Successivamente, analizza nel dettaglio il processo di simulazione della navigazione autonoma e della determinazione della traiettoria in ambiente software Matlab e Simulink, procedendo nell’analisi di alcuni casi di studio in ambienti realistici. L’elaborato si conclude con un breve riepilogo di quanto svolto e con alcune considerazioni sugli sviluppi futuri.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Questa tesi si occupa dell’estensione di un framework software finalizzato all'individuazione e al tracciamento di persone in una scena ripresa da telecamera stereoscopica. In primo luogo è rimossa la necessità di una calibrazione manuale offline del sistema sfruttando algoritmi che consentono di individuare, a partire da un fotogramma acquisito dalla camera, il piano su cui i soggetti tracciati si muovono. Inoltre, è introdotto un modulo software basato su deep learning con lo scopo di migliorare la precisione del tracciamento. Questo componente, che è in grado di individuare le teste presenti in un fotogramma, consente ridurre i dati analizzati al solo intorno della posizione effettiva di una persona, escludendo oggetti che l’algoritmo di tracciamento sarebbe portato a individuare come persone.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recent years have witnessed increased development of small, autonomous fixed-wing Unmanned Aerial Vehicles (UAVs). In order to unlock widespread applicability of these platforms, they need to be capable of operating under a variety of environmental conditions. Due to their small size, low weight, and low speeds, they require the capability of coping with wind speeds that are approaching or even faster than the nominal airspeed. In this thesis, a nonlinear-geometric guidance strategy is presented, addressing this problem. More broadly, a methodology is proposed for the high-level control of non-holonomic unicycle-like vehicles in the presence of strong flowfields (e.g. winds, underwater currents) which may outreach the maximum vehicle speed. The proposed strategy guarantees convergence to a safe and stable vehicle configuration with respect to the flowfield, while preserving some tracking performance with respect to the target path. As an alternative approach, an algorithm based on Model Predictive Control (MPC) is developed, and a comparison between advantages and disadvantages of both approaches is drawn. Evaluations in simulations and a challenging real-world flight experiment in very windy conditions confirm the feasibility of the proposed guidance approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Driving simulators emulate a real vehicle drive in a virtual environment. One of the most challenging problems in this field is to create a simulated drive as real as possible to deceive the driver's senses and cause the believing to be in a real vehicle. This thesis first provides an overview of the Stuttgart driving simulator with a description of the overall system, followed by a theoretical presentation of the commonly used motion cueing algorithms. The second and predominant part of the work presents the implementation of the classical and optimal washout algorithms in a Simulink environment. The project aims to create a new optimal washout algorithm and compare the obtained results with the results of the classical washout. The classical washout algorithm, already implemented in the Stuttgart driving simulator, is the most used in the motion control of the simulator. This classical algorithm is based on a sequence of filters in which each parameter has a clear physical meaning and a unique assignment to a single degree of freedom. However, the effects on human perception are not exploited, and each parameter must be tuned online by an engineer in the control room, depending on the driver's feeling. To overcome this problem and also consider the driver's sensations, the optimal washout motion cueing algorithm was implemented. This optimal control-base algorithm treats motion cueing as a tracking problem, forcing the accelerations perceived in the simulator to track the accelerations that would have been perceived in a real vehicle, by minimizing the perception error within the constraints of the motion platform. The last chapter presents a comparison between the two algorithms, based on the driver's feelings after the test drive. Firstly it was implemented an off-line test with a step signal as an input acceleration to verify the behaviour of the simulator. Secondly, the algorithms were executed in the simulator during a test drive on several tracks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Artificial Intelligence is reshaping the field of fashion industry in different ways. E-commerce retailers exploit their data through AI to enhance their search engines, make outfit suggestions and forecast the success of a specific fashion product. However, it is a challenging endeavour as the data they possess is huge, complex and multi-modal. The most common way to search for fashion products online is by matching keywords with phrases in the product's description which are often cluttered, inadequate and differ across collections and sellers. A customer may also browse an online store's taxonomy, although this is time-consuming and doesn't guarantee relevant items. With the advent of Deep Learning architectures, particularly Vision-Language models, ad-hoc solutions have been proposed to model both the product image and description to solve this problems. However, the suggested solutions do not exploit effectively the semantic or syntactic information of these modalities, and the unique qualities and relations of clothing items. In this work of thesis, a novel approach is proposed to address this issues, which aims to model and process images and text descriptions as graphs in order to exploit the relations inside and between each modality and employs specific techniques to extract syntactic and semantic information. The results obtained show promising performances on different tasks when compared to the present state-of-the-art deep learning architectures.