2 resultados para Vickers
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Gli acciai inossidabili austenitici presentano ottime caratteristiche che li rendono ideali in tutti quei settori in cui è richiesta un’elevata resistenza alla corrosione associata a caratteristiche estetiche e funzionali. L’acciaio AISI 316L risulta essere uno dei più studiati ed utilizzati, specie nell’industria alimentare e farmaceutica, dove leapparecchiature debbono poter essere sottoposte ad aggressive procedure di sanificazione. Tuttavia, la modesta resistenza meccanica e la bassa durezza superficiale di questo acciaio determinano un comportamento non soddisfacente dal punto di vista dell’usura da strisciamento in assenza di lubrificanti, situazione che si verifica sovente in molti macchinari dedicati a queste industrie. Tra le varie soluzioni, studiate per migliorare il suo comportamento tribologico, la cementazione a bassa temperatura (LowTemperature Carburizing, LTC) seguita dalla deposizione PE-CVD (Plasma-Enhanced Chemical Vapour Deposition) di un rivestimento di carbonio amorfo idrogenato (a-C:H), sembra essere molto promettente. In questo lavoro vengono analizzate le caratteristiche tribologiche dell’acciaio AISI 316L cementato a bassa temperatura e rivestito di carbonio amorfo idrogenato, tramite prove tribologiche di strisciamento non lubrificato in geometria di contatto pattino su cilindro. Sono state verificate, inoltre, le caratteristiche microstrutturali e meccaniche superficiali del rivestimento multistrato LTC/a-C:H tramite osservazioni morfologiche/topografiche, analisi in spettroscopia micro-Raman e misure di indentazione strumentata sulle superfici rivestite, seguite da analisi metallografia e misura dei profili di microdurezza Vickers in sezione trasversale. I risultati ottenuti dimostrano che, ai fini di contenere l’effetto negativo legato all’aumento di rugosità dovuto al trattamento LTC, è opportuno effettuare una lucidatura precedente al trattamento stesso, poiché effettuandola successivamente si rischierebbe dicomprometterne lo strato efficace. Inoltre, si osserva come il trattamento LTC incrementi le capacità del substrato di supportare il rivestimento a-C:H, portando ad un miglioramento delle prestazioni tribologiche, nelle prove di strisciamento non lubrificato. Infine, si dimostra come l’utilizzo di un rivestimento a base di carbonio amorfo idrogenato adeguatamente supportato permetta una riduzione dell’attrito (di oltre cinque volte) e dell’usura (di circa dieci ordini di grandezza) rispetto ai corrispondenti materiali non rivestiti.
Resumo:
Il lavoro di tesi, svolto presso l’Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR, Faenza, RA), ha affrontato la produzione e la caratterizzazione di ceramici a base di boruro di zirconio (ZrB2) con lo scopo di valutare l’efficacia delle fibre corte di carbonio come potenziale rinforzo. Il boruro di zirconio appartiene a una famiglia di materiali noti come UHTC (Ultra-High Temperature Ceramics) caratterizzati da elevato punto di fusione e in grado di mantenere la resistenza meccanica e operare con limitata ossidazione a temperature superiori ai 2000°C. Il principale ostacolo nella produzione dei materiali a base di ZrB2 è il processo di sintesi, infatti, a causa della loro elevata temperatura di fusione, per ottenere un materiale completamente denso è necessario utilizzare processi a temperatura e pressione elevati (T > 2000°C e P > 30 MPa), condizioni che vanno ad influenzare la microstruttura della matrice e delle fibre e di conseguenza le proprietà meccaniche del materiale. L’aggiunta di additivi di sinterizzazione idonei permette di ottenere materiali perfettamente densi anche a temperature e pressioni inferiori. Tuttavia lo ZrB2 non viene ampiamente utilizzato per applicazioni strutturali a causa della sua fragilità, per far fronte alla sua bassa tenacità il materiale viene spesso rinforzato con una fase allungata (whiskers o fibre). È già oggetto di studi l’utilizzo di fibre corte e whiskers di SiC per tenacizzare lo ZrB2, tuttavia la forte interfaccia che viene a crearsi tra fibra e matrice, che non permette il pull-out delle fibre, ci porta a credere che una fibra che non tenda a reagire con la matrice, presentando un’interfaccia più debole, possa portare ad una tenacizzazione più efficace. Per questo scopo sono stati realizzati mediante pressatura a caldo due materiali rinforzati con fibre corte di carbonio: ZrB2 + 5% vol MoSi2 + 8% vol fibre di carbonio e [ZrB2 + 2 % peso C] + 8% vol fibre di carbonio, indicati rispettivamente con Z5M_Cf e Z2C_Cf. Sono stati analizzati e discussi diversi aspetti del materiale rinforzato tra cui: il comportamento di densificazione durante la pressatura a caldo, l’evoluzione della microstruttura della matrice, la distribuzione e la morfologia delle fibre, l’influenza del rinforzo sulle proprietà meccaniche di durezza e tenacità e sulla resistenza all’ossidazione. L’elaborato è strutturato come segue: inizialmente sono state introdotte le caratteristiche generali dei ceramici avanzati tra cui le proprietà, la produzione e le applicazioni; successivamente è stata approfondita la descrizione dei materiali a base di boruro di zirconio, in particolare i processi produttivi e l’influenza degli additivi di sinterizzazione sulla densificazione e sulle proprietà; ci si è poi concentrati sull’effetto di una seconda fase allungata per il rinforzo del composito. Per quanto riguarda la parte sperimentale vengono descritte le principali fasi della preparazione e caratterizzazione dei materiali: le materie prime, disperse in un solvente, sono state miscelate mediante ball-milling, successivamente è stato evaporato il solvente e la polvere ottenuta è stata formata mediante pressatura uniassiale. I campioni, dopo essere stati sinterizzati mediante pressatura uniassiale a caldo, sono stati tagliati e lucidati a specchio per poter osservare la microstruttura. Quest’ultima è stata analizzata al SEM per studiare l’effetto dell’additivo di sinterizzazione (MoSi2 e carbonio) e l’interfaccia tra matrice e fase rinforzante. Per approfondire l’effetto del rinforzo sulle proprietà meccaniche sono state misurate la durezza e la tenacità del composito; infine è stata valutata la resistenza all’ossidazione mediante prove in aria a 1200°C e 1500°C. L’addizione di MoSi2 ha favorito la densificazione a 1800°C mediante formazione di una fase liquida transiente, tuttavia il materiale è caratterizzato da una porosità residua di ~ 7% vol. L’addizione del carbonio ha favorito la densificazione completa a 1900°C grazie alla reazione dall’additivo con gli ossidi superficiali dello ZrB2. La microstruttura delle matrici è piuttosto fine, con una dimensione media dei grani di ~ 2 μm per entrambi i materiali. Nel caso del materiale con Z5M_Cf sono presenti nella matrice particelle di SiC e fasi MoB derivanti dalla reazione dell’additivo con le fibre e con la matrice; invece nel materiale Z2C_Cf sono presenti grani di carbonio allungati tra i bordi grano, residui delle reazioni di densificazione. In entrambi i materiali le fibre sono distribuite omogeneamente e la loro interfaccia con la matrice è fortemente reattiva. Nel caso del materiale Z5M_Cf si è formata una struttura core-shell con lo strato più esterno formato da SiC, formato dalla reazione tra il siliciuro e la fibra di C. Nel caso del materiale Z2C_Cf non si forma una vera e propria interfaccia, ma la fibra risulta fortemente consumata per via dell’alta temperatura di sinterizzazione. I valori di durezza Vickers dei materiali Z5M_Cf e Z2C_Cf sono rispettivamente 11 GPa e 14 GPa, valori inferiori rispetto al valore di riferimento di 23 GPa dello ZrB2, ma giustificati dalla presenza di una fase meno dura: le fibre di carbonio e, nel caso di Z5M_Cf, anche della porosità residua. I valori di tenacità dei materiali Z5M_Cf e Z2C_Cf, misurati con il metodo dell’indentazione, sono rispettivamente 3.06 MPa·m0.5 e 3.19 MPa·m0.5. L’osservazione, per entrambi i materiali, del fenomeno di pull-out della fibra, sulla superficie di frattura, e della deviazione del percorso della cricca, all’interno della fibra di carbonio, lasciano supporre che siano attivi questi meccanismi tenacizzanti a contributo positivo, unitamente al contributo negativo legato allo stress residuo. La resistenza all’ossidazione dei due materiali è confrontabile a 1200°C, mentre dopo esposizione a 1500°C il materiale Z5M_Cf risulta più resistente rispetto al materiale Z2C_Cf grazie alla formazione di uno strato di SiO2 protettivo, che inibisce la diffusione dell’ossigeno all’interno della matrice. Successivamente, sono stati considerati metodi per migliorare la densità finale del materiale e abbassare ulteriormente la temperatura di sinterizzazione in modo da minimizzare la degenerazione della fibra. Da ricerca bibliografica è stato identificato il siliciuro di tantalio (TaSi2) come potenziale candidato. Pertanto è stato prodotto un terzo materiale a base di ZrB2 + Cf contenente una maggiore quantità di siliciuro (10% vol TaSi2) che ha portato ad una densità relativa del 96% a 1750°C. Questo studio ha permesso di approcciare per la prima volta le problematiche legate all’introduzione delle fibre di carbonio nella matrice di ZrB2. Investigazioni future saranno mirate alla termodinamica delle reazioni che hanno luogo in sinterizzazione per poter analizzare in maniera più sistematica la reattività delle fibre nei confronti della matrice e degli additivi. Inoltre riuscendo ad ottenere un materiale completamente denso e con fibre di carbonio poco reagite si potrà valutare la reale efficacia delle fibre di carbonio come possibili fasi tenacizzanti.