6 resultados para Vector fields.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questo lavoro ci si propone di studiare la quantizzazione del campo vettoriale, massivo e non massivo, in uno spazio-tempo di Rindler, considerando in particolare i gauge di Feynman e assiale. Le equazioni del moto vengono risolte esplicitamente in entrambi i casi; sotto opportune condizioni, è stato inoltre possibile trovare una base completa e ortonormale di soluzioni delle equazioni di campo in termini di modi normali di Fulling. Si è poi analizzata la quantizzazione dei campi vettoriali espressi in questa base.
Resumo:
The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.
Resumo:
The main task of this work is to present a concise survey on the theory of certain function spaces in the contexts of Hörmander vector fields and Carnot Groups, and to discuss briefly an application to some polyharmonic boundary value problems on Carnot Groups of step 2.
Resumo:
Lo scopo di questa tesi è studiare in dettaglio l'articolo "A Completeness Result for Time-Dependent Vector Fields and Applications" di Stefano Biagi e Andrea Bonfiglioli, dove si ottiene una condizione sufficiente per la completezza di un campo vettoriale (dipendente dal tempo) in RN, che generalizza la ben nota condizione di invarianza a sinistra per i gruppi di Lie.
Resumo:
In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.
Resumo:
The main aim of the thesis is to prove the local Lipschitz regularity of the weak solutions to a class of parabolic PDEs modeled on the parabolic p-Laplacian. This result is well known in the Euclidean case and recently has been extended in the Heisenberg group, while higher regularity results are not known in subriemannian parabolic setting. In this thesis we will consider vector fields more general than those in the Heisenberg setting, introducing some technical difficulties. To obtain our main result we will use a Moser-like iteration. Due to the non linearity of the equation, we replace the usual parabolic cylinders with new ones, whose dimension also depends on the L^p norm of the solution. In addition, we deeply simplify the iterative procedure, using the standard Sobolev inequality, instead of the parabolic one.