4 resultados para Valley Stream

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’oggetto della presente tesi progettuale riguarda l’analisi di funzionalità e usabilità per il sito www.motorvalley.it e il conseguente supporto dello sviluppo di una nuova release. Si tratta di un lavoro atto sia ad aumentare i visitatori e il volume di traffico verso il sito, sia a vendere più pacchetti turistici e promuovere eventi legati al circuito Motor Valley.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In piattaforme di Stream Processing è spesso necessario eseguire elaborazioni differenziate degli stream di input. Questa tesi ha l'obiettivo di realizzare uno scheduler in grado di attribuire priorità di esecuzione differenti agli operatori deputati all'elaborazione degli stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume,velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valori significativi. Molti sistemi sono sempre più costituiti e caratterizzati da enormi moli di dati da gestire,originati da sorgenti altamente eterogenee e con formati altamente differenziati,oltre a qualità dei dati estremamente eterogenei. Un altro requisito in questi sistemi potrebbe essere il fattore temporale: sempre più sistemi hanno bisogno di ricevere dati significativi dai Big Data il prima possibile,e sempre più spesso l’input da gestire è rappresentato da uno stream di informazioni continuo. In questo campo si inseriscono delle soluzioni specifiche per questi casi chiamati Online Stream Processing. L’obiettivo di questa tesi è di proporre un prototipo funzionante che elabori dati di Instant Coupon provenienti da diverse fonti con diversi formati e protocolli di informazioni e trasmissione e che memorizzi i dati elaborati in maniera efficiente per avere delle risposte in tempo reale. Le fonti di informazione possono essere di due tipologie: XMPP e Eddystone. Il sistema una volta ricevute le informazioni in ingresso, estrapola ed elabora codeste fino ad avere dati significativi che possono essere utilizzati da terze parti. Lo storage di questi dati è fatto su Apache Cassandra. Il problema più grosso che si è dovuto risolvere riguarda il fatto che Apache Storm non prevede il ribilanciamento delle risorse in maniera automatica, in questo caso specifico però la distribuzione dei clienti durante la giornata è molto varia e ricca di picchi. Il sistema interno di ribilanciamento sfrutta tecnologie innovative come le metriche e sulla base del throughput e della latenza esecutiva decide se aumentare/diminuire il numero di risorse o semplicemente non fare niente se le statistiche sono all’interno dei valori di soglia voluti.