5 resultados para Urban structuring and restructuring
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
With the development of the economy and society, air pollution has posed a huge threat to public health around the world, especially to people who live in urban areas. Typically, urban development patterns can be roughly divided into compact cities and urban sprawl. In recent years, the relationship between urban form and air quality (especially PM2.5) is gaining more and more attention from urban planners, environmentalists, and governments. This study is focusing on The New York metropolitan area and Shanghai city, which are both megacities but with different urban spatial forms. For both study areas,there are five main variables to measure the urban form metrics, naming Population Density, Artificial Land Area Per Ten Thousand People, Road Density, Green Land Area Ratio and Artificial Land Area Ratio. In addition, considering the impact of economic activities and public transportation, GDP per capita, Number of bus stop and Number of subway station are used as control variables. Based on the results of regression, a megacity like the New York metropolitan area with urban sprawl shows a low spatial correlation on PM2.5 concentration. Meanwhile, almost all the spatial form indicators effect on PM2.5 concentration is not significant. However, a compact megacity like Shanghai shows a diametrically opposite result. Urban form, especially population density, has a strong relationship with PM2.5 concentration. It can be predicted that a reduction in population density would lead to significant improvements on decrease the PM2.5 concentration in Shanghai. Meanwhile, increasing the ratio of green land and construction area per capita will get a positive influence on reducing PM2.5 concentration as well. Road density is not a significant factor for a megacity in both two urban forms. The way and type of energy used by vehicles on megacities maybe more critical.
Resumo:
Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.
Resumo:
Urban health and well-being are becoming current issues of modern cities due to local climate change and environmental noise. The Urban Heat Island and the Urban Noise Island have a direct impact on the economic, social, and environmental aspects of urban life, negatively affecting the well-being of worldwide citizens. The present research is focused on the study of innovative materials employed in the production of wearing course mixtures aiming to mitigate these phenomena. In particular, a synthetic transparent binder substituting bitumen and recycled aggregates produced from construction and demolition waste. Four mixtures were analysed. Among them, Mix 1 and Mix 2 are conventional wearing courses. The first is exclusively made of natural aggregates, while the second is constituted of 45 % of recycled aggregates (RA). Mix 3 and Mix 4 are draining wearing courses and, in this case, Mix 4 was produced by using 55 % of RA. Laboratory tests were required to fully characterize all the produced samples, allowing a proper comparison of results. Overall, all the mixtures studied provide prominent results suggesting potential applications of these innovative wearing courses in cycle lanes, historical centres, plazas, and parking lots. Among the conventional mixtures, Mix 2 is the most likely to assure the best performance in terms of road safety, efficiency, and durability while as far as the draining mixtures are concerned, Mix 4 is preferable due to its high content of recycled aggregates.
Resumo:
Lo scopo di questo studio è la comprensione della dinamica dello strato limite urbano per città dell’Emilia Romagna tramite simulazioni numeriche. In particolare, l’attenzione è posta sull’ effetto isola di calore, ovvero sulla differenza di temperatura dell’aria in prossimità del suolo fra zone rurali e urbane dovuta all’urbanizzazione. Le simulazioni sono state effettuate con il modello alla mesoscala "Weather Research and Forecasting" (WRF), accoppiato con le parametrizzazioni urbane "Building Effect Parametrization" (BEP) e "Building Energy Model" (BEM), che agiscono a vari livelli verticali urbani. Il periodo di studio riguarda sei giorni caldi e senza copertura nuvolosa durante un periodo di heat wave dell’anno 2015. La copertura urbana è stata definita con il "World Urban Databes and Access Portal Tools" (WUDAPT), un metodo che permette di classificare le aree urbane in dieci "urban climate zones" (UCZ), attraverso l’uso combinato di immagini satellitari e "training areas" manualmente definite con il software Google Earth. Sono state svolte diverse simulazioni a domini innestati, con risoluzione per il dominio più piccolo di 500 m, centrato sulla città di Bologna. Le differenze fra le simulazioni riguardano la presenza o l’assenza delle strutture urbane, il metodo di innesto e tipo di vegetazione rurale. Inoltre, è stato valutato l’effetto dovuto alla presenza di pannelli fotovoltaici sopra i tetti di ogni edificio e le variazioni che i pannelli esercitano sullo strato limite urbano. Per verificare la bontà del modello, i dati provenienti dalle simulazioni sono stati confrontati con misure provenienti da 41 stazioni all’interno dell’area di studio. Le variabili confrontate sono: temperatura, umidità relativa, velocità e direzione del vento. Le simulazioni sono in accordo con i dati osservativi e riescono a riprodurre l’effetto isola di calore: la differenza di temperatura fra città e zone rurali circostanti è nulla durante il giorno; al contrario, durante la notte l’isola di calore è presente, e in media raggiunge il massimo valore di 4°C alle 1:00. La presenza dei pannelli fotovoltaici abbassa la temperatura a 2 metri dell’aria al massimo di 0.8°C durante la notte, e l’altezza dello strato limite urbano dell’ordine 200mrispetto al caso senza pannelli. I risultati mostrano come l’uso di pannelli fotovoltaici all’interno del contesto urbano ha molteplici benefici: infatti, i pannelli fotovoltaici riescono a ridurre la temperatura durante un periodo di heat wave, e allo stesso tempo possono parzialmente sopperire all’alto consumo energetico, con una conseguente riduzione del consumo di combustibili fossili.
Resumo:
Marine litter and plastics are a significant and growing marine contaminant that has become a global problem. Macrolitter is subject to fragmentation and degradation due to physical, chemical and biological processes, leading to the formation of micro-litter, the so-called microplastics. The purpose of this research is to assess marine litter pollution by using remote sensing tools to identify areas of macrolitter accumulation and to evaluate the concentrations of microplastics in different environmental matrices: water, sediment and biota (i.e. mussels and fish) and to contribute to the European project MAELSTROM (Smart technology for MArinE Litter SusTainable RemOval and Management). The aim is to monitor the presence of macro- and microlitter at two sites of the Venice coastal area: an abandoned mussel farm at sea and a lagoon site near the artificial Island of Sacca Fisola; The results showed that both study areas are characterised by high amounts of marine litter, but the type of observed litter is different. In fact, in the mussel farm area, most of the litter is linked to aquaculture activities (ropes, nets, mooring blocks and floating buoys). In the Venice lagoon site, the litter comes more from urban activities and from the city of Venice (car tyres, crates, wrecks, etc.). Microplastics is present in both sites and in all the analysed matrices. Generally, higher microplastics concentrations were found at Sacca Fisola (i.e., in surface waters, mussels and fish). Moreover, some differences were also observed in shapes and colours comparing the two sites. At Sacca Fisola, white irregular fragments predominate in water samples, blue filaments in sediment and mussels, and transparent irregular fragments in fish. At the Mussel Farm, blue filaments predominate in water, sediment and mussels, while flat black fragments predominate in fish. These differences are related to the different types of macrolitter that characterised the two areas.