4 resultados para Urban environmental problems
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Epoxy resins are very diffused materials due to their high added value deriving from high mechanical proprieties and thermal resistance; for this reason they are widely used both as metallic coatings in aerospace and in food packaging. However, their preparation uses dangerous reagents like bisphenol A and epichlorohydrin respectively classified as suspected of causing damage to fertility and to be carcinogen. Therefore, to satisfy the ever-growing attention to environmental problems and human safeness, we are considering alternative “green” processes through the use of reagents obtained as by-products from other processes and mild experimental conditions, and also economically sustainable and attractive for industries. Following previous results, we carried out the reaction leading to the formation of diphenolic acid (DPA), its allylation and the following epoxidation of the double bonds, all in aqueous solvent. In a second step the obtained product were cross-linked at high temperature with and without the use of hardeners. Then, on the obtained resin, some tests were performed like release in aqueous solution, scratch test and DSC analysis.
Resumo:
The environmental problems associated to the disposal of the olive oil wastewater (OMW, Olive Mill Wastewaters), and the difficulty in the recycling because of their polyphenolic content, led to propose the separation of their polyphenols. The recovery of polyphenols from olive mill wastewaters (OMWs) provides the double opportunity to obtain high-added value biomolecules and to reduce the phytotoxicity of the effluent. The separation can be obtained by a continuous flow extraction process of adsorption and desorption, this process is characterized by the possibility to recycling the adsorbing phase and the extraction solvent. The present work is part of a project aimed to the development of pilot scale process based on the use of the AMBERLITE XAD16 as adsorption resin. The adsorption stage is preceded by a wastewater filtration pretreatment, and a final desorption process is added to recover the polyphenols using acidified ethanol as the solvent.
Resumo:
The advent of the hydrogen economy has already been predicted but it does not represent a tangible reality yet. However, decarbonizing the global economy and particularly the energy sector is vital to limit global warming and reduce the incumbent environmental problems. Hydrogen is a promising zero-emission fuel that could replace traditional fossil fuels, playing a key role in the transition towards a more sustainable economy. At present, hydrogen-powered cars are already spread worldwide and the deployment of hydrogen buses seems to be the next goal in the decarbonization process of the transportation sector. In contrast with the undeniable benefits introduced by the use of this alternative fuel, given its hazardous properties, safety is a topic of high concern. The present study concerns the evaluation of the risks linked to the on board storage of hydrogen on hydrogen-powered buses in case of road accident. Currently, hydrogen can be stored on board as a high-pressure gas, as a cryogenic liquid or in cryo-compressed form. Those solutions are compared from a safety point of view. First, the final accidental scenarios that could follow the release of the fuel in case of a road crash are pointed out. Secondly, threshold values for the hazardous effects of each scenario are fixed and the corresponding damage distances are calculated thanks to the use of the software PHAST 8.4. Finally, indicators are quantified to compare the different options. Results are discussed to find out the safer solution and to evaluate whether the replacement of fossil fuels with hydrogen introduces new safety issues.