6 resultados para Urate Over-production

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis has the main aim of defining the lithostratigraphy, depositional architecture, post-depositional modifications and reservoir characteristics of the Cardium Formation in the Ferrier Oilfield, and how these characteristics can have great impact over production rates, GOR and produced fluid discrimination. In the Ferrier area, the Cardium Formation is composed by a NE prograding clastic sequence made up of offshore to shoreface deposits sealed by marine shales. The main reservoir is composed by sandstones and conglomerates interpreted to have deposited in a shoreface depositional environment. Lithofacies and net reservoir thickness mapping led to more detailed understanding of the 3D reservoir architecture, and cross-sections shed light on the Cardium depositional architecture and post-deposition sediment erosion in the Ferrier area. Detailed core logging, thin section, SEM and CL analyses were used to study the mineralogy, texture and pore characterization of the Cardium reservoir, and three main compartments have been identified based on production data and reservoir characteristics. Finally, two situations showing odd production behaviour of the Cardium were resolved. This shed light on the effect of structural features and reservoir quality and thickness over hydrocarbon migration pathways. The Ferrier example offers a unique case of fluid discrimination in clastic reservoirs due both to depositional and post-depositional factors, and could be used as analogue for similar situations in the Western Canadian Sedimentary Basin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 1970 the community has started to realize that have as a main principle the industry one, with the oblivion of the people and health conditions and of the world in general, it could not be a guideline principle. The sea, as an energy source, has the characteristic of offering different types of exploitation, in this project the focus is on the wave energy. Over the last 15 years the Countries interested in the renewable energies grew. Therefore many devices have came out, first in the world of research, then in the commercial one; these converters are able to achieve an energy transformation into electrical energy. The purpose of this work is to analyze the efficiency of a new wave energy converter, called WavePiston, with the aim of determine the feasibility of its actual application in different wave conditions: from the energy sea state of the North Sea, to the more quiet of the Mediterranean Sea. The evaluation of the WavePiston is based on the experimental investigation conducted at the University of Aalborg, in Denmark; and on a numerical modelling of the device in question, to ascertain its efficiency regardless the laboratory results. The numerical model is able to predict the laboratory condition, but it is not yet a model which can be used for any installation, in fact no mooring or economical aspect are included yet. È dai primi anni del 1970 che si è iniziato a capire che il solo principio dell’industria con l’incuranza delle condizioni salutari delle persone e del mondo in generale non poteva essere un principio guida. Il mare, come fonte energetica, ha la caratteristica di offrire diverse tipologie di sfruttamento, in questo progetto è stata analizzata l’energia da onda. Negli ultimi 15 anni sono stati sempre più in aumento i Paesi interessati in questo ambito e di conseguenza, si sono affacciati, prima nel mondo della ricerca, poi in quello commerciale, sempre più dispositivi atti a realizzare questa trasformazione energetica. Di tali convertitori di energia ondosa ne esistono diverse classificazioni. Scopo di tale lavoro è analizzare l’efficienza di un nuovo convertitore di energia ondosa, chiamato WavePiston, al fine si stabilire la fattibilità di una sua reale applicazione in diverse condizioni ondose: dalle più energetiche del Mare del Nord, alle più quiete del Mar Mediterraneo. La valutazione sul WavePiston è basata sullo studio sperimentale condotto nell’Università di Aalborg, in Danimarca; e su di una modellazione numerica del dispositivo stesso, al fine di conoscerne l’efficienza a prescindere dalla possibilità di avere risultati di laboratorio. Il modello numerico è in grado di predirre le condizioni di laboratorio, ma non considera ancora elementi come gli ancoraggi o valutazione dei costi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part of this essay aims at investigating the already available and promising technologies for the biogas and bio-hydrogen production from anaerobic digestion of different organic substrates. One strives to show all the peculiarities of this complicate process, such as continuity, number of stages, moisture, biomass preservation and rate of feeding. The main outcome of this part is the awareness of the huge amount of reactor configurations, each of which suitable for a few types of substrate and circumstance. Among the most remarkable results, one may consider first of all the wet continuous stirred tank reactors (CSTR), right to face the high waste production rate in urbanised and industrialised areas. Then, there is the up-flow anaerobic sludge blanket reactor (UASB), aimed at the biomass preservation in case of highly heterogeneous feedstock, which can also be treated in a wise co-digestion scheme. On the other hand, smaller and scattered rural realities can be served by either wet low-rate digesters for homogeneous agricultural by-products (e.g. fixed-dome) or the cheap dry batch reactors for lignocellulose waste and energy crops (e.g. hybrid batch-UASB). The biological and technical aspects raised during the first chapters are later supported with bibliographic research on the important and multifarious large-scale applications the products of the anaerobic digestion may have. After the upgrading techniques, particular care was devoted to their importance as biofuels, highlighting a further and more flexible solution consisting in the reforming to syngas. Then, one shows the electricity generation and the associated heat conversion, stressing on the high potential of fuel cells (FC) as electricity converters. Last but not least, both the use as vehicle fuel and the injection into the gas pipes are considered as promising applications. The consideration of the still important issues of the bio-hydrogen management (e.g. storage and delivery) may lead to the conclusion that it would be far more challenging to implement than bio-methane, which can potentially “inherit” the assets of the similar fossil natural gas. Thanks to the gathered knowledge, one devotes a chapter to the energetic and financial study of a hybrid power system supplied by biogas and made of different pieces of equipment (natural gas thermocatalitic unit, molten carbonate fuel cell and combined-cycle gas turbine structure). A parallel analysis on a bio-methane-fed CCGT system is carried out in order to compare the two solutions. Both studies show that the apparent inconvenience of the hybrid system actually emphasises the importance of extending the computations to a broader reality, i.e. the upstream processes for the biofuel production and the environmental/social drawbacks due to fossil-derived emissions. Thanks to this “boundary widening”, one can realise the hidden benefits of the hybrid over the CCGT system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geopolymers are solid aluminosilicate material made by mixing an activating solution and a solid precursor. This work studied the mechanisms of synthesis of metakaolin-based geopolymers and the influence of water content, described by the molar ratio H2O/Na2O, on the final product. The samples were tested using a Uniaxial Compressive Test (UCT) to define their compressive resistance. Two geopolymers series were synthetized and let them rest for 7- days and 28-days, each of them composed by six different sets. 7-day rest series showed that water addition had no relevant effect over its resistance while the 28-day rest series almost doubled the compressive resistance, although those with the highest H2O/Na2O molar ratio showed instead a drastic reduction. Two other series were synthesized by adding silt aggregate, a waste material obtained in the production of aggregate for concrete, corresponding to 10wt% and 20wt%of the metakaolin used. After 28 days of aging, these samples were tested via UCT to measure the variation of the compressive resistance after the silt addition. The aggregate has disruptive effects over the compressive resistance, but the 20wt% samples achieved a higher compressive resistance. Samples with highest and lowest compressive resistance have been chosen to carry out an XRD analysis. In all the samples it has been recognized the presence of Anatase (TiO2), a titanium oxide found in the metakaolin and Thermonatrite, a hydrated sodium carbonate [Na2CO3 • (H2O)]. Scanning Electron Microscopy was carried out on the samples with the highest compressive resistance and showed that the samples with lower water content developed a homogeneous geopolymeric texture, while those with higher water content showed instead a spongy-like texture and a higher air or pore solution bubbles presence. Silt/geopolymer composites showed a fracture system developing across the interstitial transition zone between the geopolymer matrix and the aggregate particle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.