3 resultados para Univariate Analysis box-jenkins methodology

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Airborne Particulate Matter (PM), can get removed from the atmosphere through wet and dry mechanisms, and physically/chemically interact with materials and induce premature decay. The effect of dry depositions is a complex issue, especially for outdoor materials, because of the difficulties to collect atmospheric deposits repeatable in terms of mass and homogeneously distributed on the entire investigated substrate. In this work, to overcome these problems by eliminating the variability induced by outdoor removal mechanisms (e.g. winds and rainfalls), a new sampling system called ‘Deposition Box’, was used for PM sampling. Four surrogate materials (Cellulose Acetate, Regenerated Cellulose, Cellulose Nitrate and Aluminum) with different surfaces features were exposed in the urban-marine site of Rimini (Italy), in vertical and horizontal orientations. Homogeneous and reproducible PM deposits were obtained and different analytical techniques (IC, AAS, TOC, VP-SEM-EDX, Vis-Spectrophotometry) were employed to characterize their mass, dimension and composition. Results allowed to discriminate the mechanisms responsible of the dry deposition of atmospheric particles on surfaces with different nature and orientation and to determine which chemical species, and in which amount, tend to preferentially deposit on them. This work demonstrated that “Deposition Box” can represent an affordable tool to study dry deposition fluxes on materials and results obtained will be fundamental in order to extend this kind of exposure to actual building and heritage materials, to investigate the PM contribution in their decay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.