2 resultados para Two-photon resonant propagation

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal dynamics of elliptical galaxies in clusters depends on many factors, including the environment in which the galaxy is located. In addition to the strong encounters with the other galaxies, we can also consider the gravitational interaction with the ubiquitous Cluster Tidal Field (CTF). As recognized in many studies, one possible way in which CTF affects the dynamics of galaxies inside the cluster is related to the fact that they may start oscillating as “rigid bodies” around their equilibrium positions in the field, with the periods of these oscillations curiously similar to those of stellar orbits in the outer parts of galaxies. Resonances between the two motions are hence expected and this phenomenon could significantly contribute to the formation of the Intracluster Stellar Population (ISP), whose presence is abundantly confirmed by observations. In this thesis work, we propose to study the motion of an elliptical galaxy, modelled as a rigid body, in the CTF, especially when its center of mass traces a quasi-circular orbit in the cluster gravitational potential. This case extends and generalizes the previous models and findings, proceeding towards a much more realistic description of galaxy motion. In addition to this, the presence of a further oscillation, namely that of the entire galaxy along its orbit, will possibly increase the probability of having resonances and, consequently, the rate of ISP production nearly to observed values. Thus, after reviewing the dynamics of a rigid body in a generic force field, we will assess some physically relevant studies and report their main results, discussing their implications with respect to our problem. We will conclude our discussion focusing on the more realistic scenario of an elliptical galaxy whose center of mass moves on a quasi-circular orbit in a spherically symmetric potential. The derivation of the fundamental equations of motion will serve as the basis for future modelling and discussions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object of study of the present work are Bose-Fermi mixtures in three dimensions at zero temperature. The system is characterized by a great tunability of physical parameters that is achieved by means of a Fano-Feshbach resonance. As a result, there are mainly two regimes: we move from a situation in which bosons and fermions are weakly interacting to a context in which bosons are coupled to fermions so as to form molecules that are composite fermions, as the coupling between the two types of particles is increased. In the former case, we can describe the mixture as a weakly attractive Bose-Fermi one, while in the latter the same is described in terms of molecules and excess atoms or particles which are unpaired. The main aim of the thesis is to analyze the spectral weight functions which represent the single-particle excitation spectra of the system and are relevant to recent radio-frequency spectroscopy experiments of the system. In order to pursue this objective, diagrammatic methods are used. The formalism is developed within the T-matrix approach: it consists of an approximate calculation whichselects exclusively the class of Feynman’s diagrams that collects all possible repeated boson-fermion interaction.