3 resultados para Two-Body Dirac Equation
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Lo scopo di questa tesi è studiare l'espansione dinamica di due fermioni interagenti in una catena unidimensionale cercando di definire il ruolo degli stati legati durante l'evoluzione temporale del sistema. Lo studio di questo modello viene effettuato a livello analitico tramite la tecnica del Bethe ansatz, che ci fornisce autovalori ed autovettori dell'hamiltoniana, e se ne valutano le proprietà statiche. Particolare attenzione è stata dedicata alle caratteristiche dello spettro al variare dell'interazione tra le due particelle e alle caratteristiche degli autostati. Dalla risoluzione dell'equazione di Bethe vengono ricercate le soluzioni che danno luogo a stati legati delle due particelle e se ne valuta lo spettro energetico in funzione del momento del centro di massa. Si è studiato inoltre l'andamento del numero delle soluzioni, in particolare delle soluzioni che danno luogo ad uno stato legato, al variare della lunghezza della catena e del parametro di interazione. La valutazione delle proprietà dinamiche del modello è stata effettuata tramite l'utilizzo dell'algoritmo t-DMRG (time dependent - Density Matrix Renormalization Group). Questo metodo numerico, che si basa sulla decimazione dello spazio di Hilbert, ci permette di avere accesso a quantità che caratterizzano la dinamica quali la densità e la velocità di espansione. Da queste sono stati estratti i proli dinamici della densità e della velocità di espansione al variare del valore del parametro di interazione.
Resumo:
This dissertation presents a calibration procedure for a pressure velocity probe. The dissertation is divided into four main chapters. The first chapter is divided into six main sections. In the firsts two, the wave equation in fluids and the velocity of sound in gases are calculated, the third section contains a general solution of the wave equation in the case of plane acoustic waves. Section four and five report the definition of the acoustic impedance and admittance, and the practical units the sound level is measured with, i.e. the decibel scale. Finally, the last section of the chapter is about the theory linked to the frequency analysis of a sound wave and includes the analysis of sound in bands and the discrete Fourier analysis, with the definition of some important functions. The second chapter describes different reference field calibration procedures that are used to calibrate the P-V probes, between them the progressive plane wave method, which is that has been used in this work. Finally, the last section of the chapter contains a description of the working principles of the two transducers that have been used, with a focus on the velocity one. The third chapter of the dissertation is devoted to the explanation of the calibration set up and the instruments used for the data acquisition and analysis. Since software routines were extremely important, this chapter includes a dedicated section on them and the proprietary routines most used are thoroughly explained. Finally, there is the description of the work that has been done, which is identified with three different phases, where the data acquired and the results obtained are presented. All the graphs and data reported were obtained through the Matlab® routine. As for the last chapter, it briefly presents all the work that has been done as well as an excursus on a new probe and on the way the procedure implemented in this dissertation could be applied in the case of a general field.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.