3 resultados para Two diagnostic tests
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Longstanding taxonomic ambiguity and uncertainty exist in the identification of the common (M. mustelus) and blackspotted (M. punctulatus) smooth-hound in the Adriatic Sea. The lack of a clear and accurate method of morphological identification, leading to frequent misidentification, prevents the collation of species-specific landings and survey data for these fishes and hampers the delineation of the distribution ranges and stock boundaries of the species. In this context, adequate species-specific conservation and management strategies can not be applied without risks of population declining and local extinction. In this thesis work I investigated the molecular ecology of the two smooth-hound sharks which are abundant in the demersal trawl surveys carried out in the NC Adriatic Sea to monitor and assess the fishery resources. Ecological and evolutionary relationships were assessed by two molecular tests: a DNA barcoding analysis to improve species identification (and consequently the knowledge of their spatial ecology and taxonomy) and a hybridization assay based on the nuclear codominant marker ITS2 to evaluate reproductive interactions (hybridization or gene introgression). The smooth-hound sharks (N=208) were collected during the MEDITS 2008 and 2010 campaigns along the Italian and Croatian coasts of the Adriatic Sea, in the Sicilian Channel and in the Algerian fisheries. Since the identification based on morphological characters is not strongly reliable, I performed a molecular identification of the specimens producing for each one the cytochrome oxidase subunit 1 (COI) gene sequence (ca. 640 bp long) and compared them with reference sequences from different databases (GenBank and BOLD). From these molecular ID data I inferred the distribution of the two target species in the NC Adriatic Sea. In almost the totality of the MEDITS hauls I found no evidence of species sympatry. The data collected during the MEDITS survey showed an almost different distribution of M. mustelus (confined along the Italian coasts) and M. punctulatus (confined along the Croatian coasts); just one sample (Gulf of Venice, where probably the ranges of the species overlap) was found to have catches of both the species. Despite these data results suggested no interaction occurred between my two target species at least during the summertime (the period in which MEDITS survey is carried out), I still wanted to know if there were inter-species reproductive interactions so I developed a simple molecular genetic method to detect hybridization. This method is based on DNA sequence polymorphism among species in the nuclear ribosomal Internal Transcribed Spacer 2 locus (ITS2). Its application to the 208 specimens collected raised important questions regarding the ecology of this two species in the Adriatic Sea. In fact results showed signs of hybridization and/or gene introgression in two sharks collected during the trawl survey of 2008 and one collected during the 2010 one along the Italian and Croatian coasts. In the case that it will be confirmed the hybrid nature of these individuals, a spatiotemporal overlapping of the mating behaviour and ecology must occur. At the spatial level, the northern part of the Adriatic Sea (an area where the two species occur with high frequency of immature individuals) could likely play the role of a common nursery area for both species.
Resumo:
ABSTRACT (italiano) Con crescente attenzione riguardo al problema della sicurezza di ponti e viadotti esistenti nei Paesi Bassi, lo scopo della presente tesi è quello di studiare, mediante la modellazione con Elementi Finiti ed il continuo confronto con risultati sperimentali, la risposta in esercizio di elementi che compongono infrastrutture del genere, ovvero lastre in calcestruzzo armato sollecitate da carichi concentrati. Tali elementi sono caratterizzati da un comportamento ed una crisi per taglio, la cui modellazione è, da un punto di vista computazionale, una sfida piuttosto ardua, a causa del loro comportamento fragile combinato a vari effetti tridimensionali. La tesi è incentrata sull'utilizzo della Sequentially Linear Analysis (SLA), un metodo di soluzione agli Elementi Finiti alternativo rispetto ai classici approcci incrementali e iterativi. Il vantaggio della SLA è quello di evitare i ben noti problemi di convergenza tipici delle analisi non lineari, specificando direttamente l'incremento di danno sull'elemento finito, attraverso la riduzione di rigidezze e resistenze nel particolare elemento finito, invece dell'incremento di carico o di spostamento. Il confronto tra i risultati di due prove di laboratorio su lastre in calcestruzzo armato e quelli della SLA ha dimostrato in entrambi i casi la robustezza del metodo, in termini di accuratezza dei diagrammi carico-spostamento, di distribuzione di tensioni e deformazioni e di rappresentazione del quadro fessurativo e dei meccanismi di crisi per taglio. Diverse variazioni dei più importanti parametri del modello sono state eseguite, evidenziando la forte incidenza sulle soluzioni dell'energia di frattura e del modello scelto per la riduzione del modulo elastico trasversale. Infine è stato effettuato un paragone tra la SLA ed il metodo non lineare di Newton-Raphson, il quale mostra la maggiore affidabilità della SLA nella valutazione di carichi e spostamenti ultimi insieme ad una significativa riduzione dei tempi computazionali. ABSTRACT (english) With increasing attention to the assessment of safety in existing dutch bridges and viaducts, the aim of the present thesis is to study, through the Finite Element modeling method and the continuous comparison with experimental results, the real response of elements that compose these infrastructures, i.e. reinforced concrete slabs subjected to concentrated loads. These elements are characterized by shear behavior and crisis, whose modeling is, from a computational point of view, a hard challenge, due to their brittle behavior combined with various 3D effects. The thesis is focused on the use of Sequentially Linear Analysis (SLA), an alternative solution technique to classical non linear Finite Element analyses that are based on incremental and iterative approaches. The advantage of SLA is to avoid the well-known convergence problems of non linear analyses by directly specifying a damage increment, in terms of a reduction of stiffness and strength in the particular finite element, instead of a load or displacement increment. The comparison between the results of two laboratory tests on reinforced concrete slabs and those obtained by SLA has shown in both the cases the robustness of the method, in terms of accuracy of load-displacements diagrams, of the distribution of stress and strain and of the representation of the cracking pattern and of the shear failure mechanisms. Different variations of the most important parameters have been performed, pointing out the strong incidence on the solutions of the fracture energy and of the chosen shear retention model. At last a confrontation between SLA and the non linear Newton-Raphson method has been executed, showing the better reliability of the SLA in the evaluation of the ultimate loads and displacements, together with a significant reduction of computational times.
Resumo:
The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.