8 resultados para Twitter election
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.
Resumo:
Gli ultimi anni hanno visto una crescita esponenziale nell’uso dei social media (recensioni, forum, discussioni, blog e social network); le persone e le aziende utilizzano sempre più le informazioni (opinioni e preferenze) pubblicate in questi mezzi per il loro processo decisionale. Tuttavia, il monitoraggio e la ricerca di opinioni sul Web da parte di un utente o azienda risulta essere un problema molto arduo a causa della proliferazione di migliaia di siti; in più ogni sito contiene un enorme volume di testo non sempre decifrabile in maniera ottimale (pensiamo ai lunghi messaggi di forum e blog). Inoltre, è anche noto che l’analisi soggettiva delle informazioni testuali è passibile di notevoli distorsioni, ad esempio, le persone tendono a prestare maggiore attenzione e interesse alle opinioni che risultano coerenti alle proprie attitudini e preferenze. Risulta quindi necessario l’utilizzo di sistemi automatizzati di Opinion Mining, per superare pregiudizi soggettivi e limitazioni mentali, al fine di giungere ad una metodologia di Sentiment Analysis il più possibile oggettiva.
Resumo:
Over the time, Twitter has become a fundamental source of information for news. As a one step forward, researchers have tried to analyse if the tweets contain predictive power. In the past, in financial field, a lot of research has been done to propose a function which takes as input all the tweets for a particular stock or index s, analyse them and predict the stock or index price of s. In this work, we take an alternative approach: using the stock price and tweet information, we investigate following questions. 1. Is there any relation between the amount of tweets being generated and the stocks being exchanged? 2. Is there any relation between the sentiment of the tweets and stock prices? 3. What is the structure of the graph that describes the relationships between users?
Resumo:
Negli anni la funzione dei social network è cambiata molte volte. Alle origini i social network erano uno strumento di connessione tra amici, ora sono siti internet in cui le persone mettono informazioni e quando un social network ha milioni di utenti, diventa un’incredibile sorgente di dati. Twitter è uno dei siti internet più visitati, e viene descritto come “the SMS of internet”, perchè è un social network che permette ai suoi utenti di inviare e leggere messaggi corti, di 140 caratteri, chiamati “tweets”. Con il passare del tempo Twitter `e diventato una fonte fondamentale di notizie. Il suo grande numero di utenti permette alle notizie di espandersi nella rete in modo virale. Molte persone hanno cercato di analizzare il potere dei tweet, come il contenuto positivo o negativo, mentre altri hanno cercato di capire se avessero un potere predittivo. In particolare nel mondo finanziario, sono state avviate molte ricerche per verificare l’esistenza di una effettiva correlazione tra i tweets e la fluttuazione del mercato azionario. L’effettiva presenza di tale relazione unita a un modello predittivo, potrebbe portare allo sviluppo di un modello che analizzando i tweets presenti nella rete, relativi a un titolo azionario, dia informazioni sulle future variazioni del titolo stesso. La nostra attenzione si è rivolata alla ricerca e validazione statistica di tale correlazione. Sono stati effettuati test su singole azioni, sulla base dei dati disponibili, poi estesi a tutto il dataset per vedere la tendenza generale e attribuire maggior valore al risultato. Questa ricerca è caratterizzata dal suo dataset di tweet che analizza un periodo di oltre 2 anni, uno dei periodi più lunghi mai analizzati. Si è cercato di fornire maggior valore ai risultati trovati tramite l’utilizzo di validazioni statistiche, come il “permutation test”, per validare la relazione tra tweets di un titolo con i relativi valori azionari, la rimozione di una percentuale di eventi importanti, per mostrare la dipendenza o indipendenza dei dati dagli eventi più evidenti dell’anno e il “granger causality test”, per capire la direzione di una previsione tra serie. Sono stati effettuati anche test con risultati fallimentari, dai quali si sono ricavate le direzioni per i futuri sviluppi di questa ricerca.
Resumo:
I Social Network sono una fonte di informazioni di natura spontanea, non guidata, provviste di posizione spaziale e prodotte in tempo reale. Il Social Sensing si basa sull'idea che gruppi di persone possano fornire informazioni, su eventi che accadono nelle loro vicinanze, simili a quelle ottenibili da sensori. La letteratura in merito all’utilizzo dei Social Media per il rilevamento di eventi catastrofici mostra una struttura comune: acquisizione, filtraggio e classificazione dei dati. La piattaforma usata, nella maggior parte dei lavori e da noi, è Twitter. Proponiamo un sistema di rilevamento di eventi per l’Emilia Romagna, tramite l’analisi di tweet geolocalizzati. Per l’acquisizione dei dati abbiamo utilizzato le Twitter API. Abbiamo effettuato due passaggi per il filtraggio dei tweet. Primo, selezione degli account di provenienza dei tweet, se non sono personali è improbabile che siano usati per dare informazioni e non vanno tenuti in considerazione. Secondo, il contenuto dei tweet, vengono scartati se presentano termini scurrili, parole come “buon giorno” e un numero di tag, riferiti ad altri utenti, superiore a quattro. La rilevazione di un valore anomalo rispetto all'insieme delle osservazioni che stiamo considerando (outlier), è il primo indice di un evento eccezionale. Per l’analisi siamo ricorsi all’outlier detection come indice di rilevamento di un evento. Fatta questa prima analisi si controlla che ci sia un effettivo picco di tweet in una zona della regione. Durante il periodo di attività non sono accaduti eventi straordinari, abbiamo quindi simulato un avvenimento per testare l'efficacia del nostro sistema. La maggior difficoltà è che i dati geolocalizzati sono in numero molto esiguo, è quindi difficile l'identificazione dei picchi. Per migliorare il sistema si propone: il passaggio a streaming dei tweet e un aumento della velocità di filtraggio; la automatizzazione dei filtri; l'implementazione di un modulo finale che operi a livello del testo.
Resumo:
The goal of my study is to investigate the relationship between selected deictic shields on the pronoun ‘I’ and the involvement/detachment dichotomy in a sample of television news interviews. I focus on the use of personal pronouns in political discourse. Drawing upon Caffi’s (2007) classification of mitigating devices into bushes, hedges and shields, I focus on deictic shields on the pronoun ‘I’: I examine the way a selection of ‘I’-related deictic shields is employed in a collection of news interviews broadcast during the electoral campaign prior to the UK 2015 General Election. My purpose is to uncover the frequencies of each of the linguistic items selected and the pragmatic functions of those linguistic items in the involvement/detachment dichotomy. The research is structured as follows. Chapter 1 provides an account of previous studies on the three main areas of research: speech event analysis, institutional interaction and the news interview, and the UK 2015 General Election television programmes. Chapter 2 is centred on the involvement/detachment dichotomy: I provide an overview of nonlinguistic and linguistic features of involvement and detachment at all levels of sentence structure. Chapter 3 contains a detailed account of the data collection and data analysis process. Chapter 4 provides an accurate description of results in three steps: quantitative analysis, qualitative analysis and discussion of the pragmatic functions of the selected linguistic features of involvement and detachment. Chapter 5 includes a brief summary of the investigation, reviews the main findings, and indicates limitations of the study and possible inputs for further research. The results of the analysis confirm that, while some of the linguistic items examined point toward involvement, others have a detaching effect. I therefore conclude that deictic shields on the pronoun ‘I’ permit the realisation of the involvement/detachment dichotomy in the speech genre of the news interview.
Resumo:
Nel corso dell’elaborato verranno utilizzate tecniche e strumenti di analisi automatica di dati aventi carattere testuale. Lo scopo del lavoro di tesi consisterà nel condurre text mining e sentiment analysis su dei messaggi al fine di comprenderne il significato, con interesse particolare sulle emozioni ed i sentimenti in essi contenuti per riuscire ad estrapolare informazioni di interesse.