5 resultados para Trombe walls
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Object of this thesis has been centrifuge modelling of earth reinforced retaining walls with modular blocks facing in order to investigate on the influence of design parameters, such as length and vertical spacing of reinforcement, on the behaviour of the structure. In order to demonstrate, 11 models were tested, each one with different length of reinforcement or spacing. Each model was constructed and then placed in the centrifuge in order to artificially raise gravitational acceleration up to 35 g, reproducing the soil behaviour of a 5 metre high wall. Vertical and horizontal displacements were recorded by means of a special device which enabled tracking of deformations in the structure along its longitudinal cross section, essentially drawing its deformed shape. As expected, results confirmed reinforcement parameters to be the governing factor in the behaviour of earth reinforced structures since increase in length and spacing improved structural stability. However, the influence of the length was found out to be the leading parameter, reducing facial deformations up to five times, and the spacing playing an important role especially in unstable configurations. When failure occurred, failure surface was characterised by the same shape (circular) and depth, regardless of the reinforcement configuration. Furthermore, results confirmed the over-conservatism of codes, since models with reinforcement layers 0.4H long showed almost negligible deformations. Although the experiments performed were consistent and yielded replicable results, further numerical modelling may allow investigation on other issues, such as the influence of the reinforcement stiffness, facing stiffness and varying backfills.
Resumo:
Il fenomeno dello scattering diffuso è stato oggetto di numerosi studi nell’arco degli ultimi anni, questo grazie alla sua rilevanza nell’ambito della propagazione elettromagnetica così come in molti altri campi di applicazione (remote sensing, ottica, fisica, etc.), ma la compresione completa di questo effetto è lungi dall’essere raggiunta. Infatti la complessità nello studio e nella caratterizzazione della diffusione deriva dalla miriade di casistiche ed effetti che si possono incontrare in un ambiente di propagazione reale, lasciando intuire la necessità di trattarne probabilisticamente il relativo contributo. Da qui nasce l’esigenza di avere applicazioni efficienti dal punto di vista ingegneristico che coniughino la definizione rigorosa del fenomeno e la conseguente semplificazione per fini pratici. In tale visione possiamo descrivere lo scattering diffuso come la sovrapposizione di tutti quegli effetti che si scostano dalle classiche leggi dell’ottica geometrica (riflessione, rifrazione e diffrazione) che generano contributi del campo anche in punti dello spazio e direzioni in cui teoricamente, per oggetti lisci ed omogenei, non dovrebbe esserci alcun apporto. Dunque l’effetto principale, nel caso di ambiente di propagazione reale, è la diversa distribuzione spaziale del campo rispetto al caso teorico di superficie liscia ed omogenea in congiunzione ad effetti di depolarizzazione e redistribuzione di energia nel bilancio di potenza. Perciò la complessità del fenomeno è evidente e l’obiettivo di tale elaborato è di proporre nuovi risultati che permettano di meglio descrivere lo scattering diffuso ed individuare altresì le tematiche sulle quali concentrare l’attenzione nei lavori futuri. In principio è stato quindi effettuato uno studio bibliografico così da identificare i modelli e le teorie esistenti individuando i punti sui quali riflettere maggiormente; nel contempo si sono analizzate le metodologie di caratterizzazione della permittività elettrica complessa dei materiali, questo per valutare la possibilità di ricavare i parametri da utilizzare nelle simulazioni utilizzando il medesimo setup di misura ideato per lo studio della diffusione. Successivamente si è realizzato un setup di simulazione grazie ad un software di calcolo elettromagnetico (basato sul metodo delle differenze finite nel dominio del tempo) grazie al quale è stato possibile analizzare la dispersione tridimensionale dovuta alle irregolarità del materiale. Infine è stata condotta una campagna di misure in camera anecoica con un banco sperimentale realizzato ad-hoc per effettuare una caratterizzazione del fenomeno di scattering in banda larga.
Resumo:
This dissertation examines how some fundamental events of the history of Ireland emerge through the art of the mural. It is divided into three chapters. The first chapter opens with a brief presentation of the mural as a form of art with a semiotic and sociological function, with a particular focus on the socio-political importance it has had and still has today in Ireland, where murals are a significant means of expressing ideals, protest and commemoration. A part of this chapter also provides data about the number of murals and their location, with a particular focus on the two cities of Belfast and Derry. This first chapter ends with the presentation of an initiative put forth by the Arts Council of Northern Ireland, called "Building Peace through the Arts: Re-Imaging Communities", and questions its implementation on the Irish soil. The second chapter provides a history of the murals in Northern Ireland, from the Unionist's early depictions of King Billy in occasion of the 12 July annual celebrations to the Republican response. This will be supported by an explanation of the two events that triggered the start of the mural painting for both factions: the Battle of the Boyne for the Loyalists and the 1981 hunger strike for the Republicans. In the third and last chapter of this dissertation, a key of the main themes, symbols, acronyms and dominant colours which can be found in Loyalist and Republican murals is provided. Furthermore, one mural for each faction is looked at more closely, with an analysis of the symbols which are present in it.
Resumo:
Seismic assessment and seismic strengthening are the key issues need to be figured out during the process of protection and reusing of historical buildings. In this thesis the seismic behaviors of the hinged steel structure, a typical structure of historical buildings, i.e. hinged steel frames in Shanghai, China, were studied based on experimental investigations and theoretic analysis. How the non-structural members worked with the steel frames was analyzed thoroughly. Firstly, two 1/4 scale hinged steel frames were constructed based on the structural system of Bund 18, a historical building in Shanghai: M1 model without infill walls, M2 model with infill walls, and tested under the horizontal cyclic loads to investigate their seismic behavior. The Shaking Table Test and its results indicated that the seismic behavior of the hinged steel frames could be improved significantly with the help of non-structural members, i.e., surrounding elements outside the hinged steel frames and infilled walls. To specify, the columns are covered with bricks, they consist of I shape formed steel sections and steel plates, which are clenched together. The steel beams are connected to the steel column by steel angle, thus the structure should be considered as a hinged frame. And the infilled wall acted as a compression diagonal strut to withstand the horizontal load, therefore, the seismic capacity and stiffness of the hinged steel frames with infilled walls could be estimated by using the equivalent compression diagonal strut model. A SAP model has been constructed with the objective to perform a dynamic nonlinear analysis. The obtained results were compared with the results obtained from Shaking Table Test. The Test Results have validated that the influence of infill walls on seismic behavior can be estimated by using the equivalent diagonal strut model.
Semi-engineered earthquake-resistant structures: one-storey buildings built up with gabion-box walls
Resumo:
This thesis studies the static and seismic behavior of simple structures made with gabion box walls. The analysis was performed considering a one-story building with standard dimensions in plan (6m x 5m) and a lightweight timber roof. The main focus of the present investigation is to find the principals aspects of the seismic behavior of a one story building made with gabion box walls, in order to prevent a failure due to seismic actions and in this way help to reduce the seismic risk of developing countries where this natural disaster have a significant intensity. Regarding the gabion box wall, it has been performed some calculations and analysis in order to understand the static and dynamic behavior. From the static point of view, it has been performed a verification of the normal stress computing the normal stress that arrives at the base of the gabion wall and the corresponding capacity of the ground. Moreover, regarding the seismic analysis, it has been studied the in-plane and out-of-plane behavior. The most critical aspect was discovered to be the out-of-plane behavior, for which have been developed models considering the “rigid- no tension model” for masonry, finding a kinematically admissible multiplier that will create a collapse mechanism for the structure. Furthermore, it has been performed a FEM and DEM models to find the maximum displacement at the center of the wall, maximum tension stresses needed for calculating the steel connectors for joining consecutive gabions and the dimensions (length of the wall and distance between orthogonal walls or buttresses) of a geometrical configuration for the standard modulus of the structure, in order to ensure an adequate safety margin for earthquakes with a PGA around 0.4-0.5g. Using the results obtained before, it has been created some rules of thumb, that have to be satisfy in order to ensure a good behavior of these structure.