6 resultados para Treatement of industrial waste waters
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Lo scopo della presente tesi è l’analisi della tossicità di nanoparticelle di ossido di zinco (nano-ZnO) verso gli organismi acquatici. In particolare, il presente studio valuta per la prima volta l'inibizione della crescita della diatomea Thalassiosira pseudonana indotta sia da nanoparticelle di dervazione industriale, che da nanoparticelle auto-estratte in laboratorio da un filtro solare. Gli esperimenti, condotti presso il Laboratorio di Ingegneria dell'Università di Miami, hanno mostrato che la tossicità indotta dalle nanoparticelle di ossido di zinco è influenzata dal tipo di nanoparticelle, nonché dalla loro concentrazione nella soluzione acquosa e dal tempo di esposizione. In particolare le nanoparticelle di derivazione industriale, più piccole rispetto alle nanoparticelle estratte dal filtro solare, hanno indotto un’inibizione della crescita superiore, specialmente a concentrazioni inferiori. Questo andamento suggerisce che ad alte concentrazioni la tossicità di nano-ZnO potrebbe essere influenzata dall’aggregazione di nanoparticelle (indipendentemente dalle dimensioni di partenza delle nanoparticelle), mentre a concentrazioni inferiori la tossicità potrebbe essere influenzata dalle dimensioni di partenza delle nanoparticelle, così come dal tipo di nanoparticelle e dal tempo di esposizione.
Resumo:
The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.
Resumo:
Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.
Resumo:
In the field of industrial automation, there is an increasing need to use optimal control systems that have low tracking errors and low power and energy consumption. The motors we are dealing with are mainly Permanent Magnet Synchronous Motors (PMSMs), controlled by 3 different types of controllers: a position controller, a speed controller, and a current controller. In this thesis, therefore, we are going to act on the gains of the first two controllers by going to find, through the TwinCAT 3 software, what might be the best set of parameters. To do this, starting with the default parameters recommended by TwinCAT, two main methods were used and then compared: the method of Ziegler and Nichols, which is a tabular method, and advanced tuning, an auto-tuning software method of TwinCAT. Therefore, in order to analyse which set of parameters was the best,several experiments were performed for each case, using the Motion Control Function Blocks. Moreover, some machines, such as large robotic arms, have vibration problems. To analyse them in detail, it was necessary to use the Bode Plot tool, which, through Bode plots, highlights in which frequencies there are resonance and anti-resonance peaks. This tool also makes it easier to figure out which and where to apply filters to improve control.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Global climate change in recent decades has strongly influenced the Arctic generating pronounced warming accompanied by significant reduction of sea ice in seasonally ice-covered seas and a dramatic increase of open water regions exposed to wind [Stephenson et al., 2011]. By strongly scattering the wave energy, thick multiyear ice prevents swell from penetrating deeply into the Arctic pack ice. However, with the recent changes affecting Arctic sea ice, waves gain more energy from the extended fetch and can therefore penetrate further into the pack ice. Arctic sea ice also appears weaker during melt season, extending the transition zone between thick multi-year ice and the open ocean. This region is called the Marginal Ice Zone (MIZ). In the Arctic, the MIZ is mainly encountered in the marginal seas, such as the Nordic Seas, the Barents Sea, the Beaufort Sea and the Labrador Sea. Formed by numerous blocks of sea ice of various diameters (floes) the MIZ, under certain conditions, allows maritime transportation stimulating dreams of industrial and touristic exploitation of these regions and possibly allowing, in the next future, a maritime connection between the Atlantic and the Pacific. With the increasing human presence in the Arctic, waves pose security and safety issues. As marginal seas are targeted for oil and gas exploitation, understanding and predicting ocean waves and their effects on sea ice become crucial for structure design and for real time safety of operations. The juxtaposition of waves and sea ice represents a risk for personnel and equipment deployed on ice, and may complicate critical operations such as platform evacuations. The risk is difficult to evaluate because there are no long-term observations of waves in ice, swell events are difficult to predict from local conditions, ice breakup can occur on very short time-scales and wave-ice interactions are beyond the scope of current forecasting models [Liu and Mollo-Christensen, 1988,Marko, 2003]. In this thesis, a newly developed Waves in Ice Model (WIM) [Williams et al., 2013a,Williams et al., 2013b] and its related Ocean and Sea Ice model (OSIM) will be used to study the MIZ and the improvements of wave modeling in ice infested waters. The following work has been conducted in collaboration with the Nansen Environmental and Remote Sensing Center and within the SWARP project which aims to extend operational services supporting human activity in the Arctic by including forecast of waves in ice-covered seas, forecast of sea-ice in the presence of waves and remote sensing of both waves and sea ice conditions. The WIM will be included in the downstream forecasting services provided by Copernicus marine environment monitoring service.