1 resultado para Travail du bois

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'argomento della Tesi è lo studio delle serie trigonometriche e di Fourier: in particolare, il problema dello sviluppo in serie trigonometrica di una data funzione 2π-periodica e l'unicità di tale sviluppo, che si deduce dal Teorema di Lebesgue e Du Bois-Reymond. Nel Capitolo 1 sono stati richiamati alcune definizioni e risultati di base della teoria delle serie trigonometriche e di Fourier. Il Capitolo 2 è dedicato alla teoria della derivata seconda di Schwarz (una generalizzazione della derivata seconda classica) e delle cosidette funzioni 1/2-convesse: il culmine di questo capitolo è rappresentato dal Teorema di De la Vallée-Poussin, che viene applicato crucialmente nella prova del teorema centrale della tesi. Nel Capitolo 3 si torna alla teoria delle serie trigonometriche, applicando i risultati principali della teoria della derivata seconda di Schwarz e delle funzioni 1/2-convesse, visti nel capitolo precedente, per definire il concetto di funzione di Riemann e di somma nel senso di Riemann di una serie trigonometrica e vederne le principali proprietà. Conclude il Capitolo 3 la prova del Teorema di Lebesgue e Du Bois-Reymond, in cui vengono usate tutte le nozioni e i risultati del terzo capitolo e il Teorema di De la Vallée-Poussin. Infine, il Capitolo 4 è dedicato alle applicazione del Teorema di Lebesgue e Du Bois-Reymond. In una prima sezione del Capitolo 4 vi sono alcuni casi particolari del Teorema di Lebesgue e Du Bois-Reymond e in particolare viene dimostrata l'unicità dello sviluppo in serie trigonometrica per una funzione 2π-periodica e a valori finiti. Conclude la Tesi un'altra applicazione del Teorema di Lebesgue e Du Bois-Reymond: la prova dell'esistenza di funzioni continue e 2π-periodiche che non sono la somma puntuale di nessuna serie trigonometrica, con un notevole esempio di Lebesgue.