1 resultado para Transitive inferences
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Aston University Research Archive (17)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (31)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (56)
- Cochin University of Science & Technology (CUSAT), India (12)
- Collection Of Biostatistics Research Archive (13)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (28)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (5)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (18)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (3)
- Glasgow Theses Service (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (15)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (14)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (109)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (125)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (14)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (15)
- Universidade Federal do Rio Grande do Norte (UFRN) (25)
- Universidade Metodista de São Paulo (6)
- Universita di Parma (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (35)
- Université de Montréal, Canada (20)
- University of Connecticut - USA (4)
- University of Michigan (8)
- University of Queensland eSpace - Australia (28)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.