9 resultados para Trammel net, small-scale fishery, discards, Mediterranean sea
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Sebbene la selettività nel tramaglio sia assodata, rimangono solitamente catturati dalla rete individui di specie bentoniche che non hanno rilevanza ai fini della commercializzazione ma svolgono ruoli ecologici rilevanti nell'ecosistema marino. Oltre che il danno ecologico, la cattura di invertebrati del benthos costituisce un aggravio di lavoro per i pescatori che impiegano molto tempo per la pulizia delle reti. L'obiettivo generale di questo lavoro è la riduzione della cattura "indesiderata" di invertebrati del benthos, migliorando la selettività ed aumentando ulteriormente la sostenibilità della pesca con il tramaglio. Nello specifico si è voluto sperimentare l'installazione di una "greca" sulla parte terminale del tramaglio. Si tratta di una fascia di rete mono-panno montata alla base dell'attrezzo, prima della lima dei piombi, allo scopo di minimizzare la cattura di specie accessorie e il rischio di danneggiamento degli organismi bentonici. Sono state impiegate 2 imbarcazioni provviste di attrezzo sperimentale in ciascuna delle tre differenti aree di indagine (Favignana, Marettimo, Trapani), per un totale di 48 uscite. Le prove di pesca sono state condotte all’interno dell’Area Marina Protetta Isole Egadi. E’ stato previsto che ogni barca impieghi un attrezzo sperimentale di 1000 metri di lunghezza in cui si alternano 50 metri di tramaglio standard (pannello interno con maglia di 31,25 mm di lato, pannelli esterni con maglia di 180 mm di lato), con pezze delle stesse caratteristiche a cui è stata aggiunta una “greca” di 35 cm di altezza, di maglia di 50 mm di lato. Dal confronto delle catture di specie commerciali e non commerciali ottenute con il tramaglio sperimentale, valutando le differenze di cattura tra le pezze con "greca" e quelle armate in maniera tradizionale, si è osservato che si ha una riduzione degli organismi bentonici nonché delle specie commerciali. L'attrezzo risulta in generale più selettivo nei confronti della rete tradizionale.
Resumo:
A climatological field is a mean gridded field that represents the monthly or seasonal trend of an ocean parameter. This instrument allows to understand the physical conditions and physical processes of the ocean water and their impact on the world climate. To construct a climatological field, it is necessary to perform a climatological analysis on an historical dataset. In this dissertation, we have constructed the temperature and salinity fields on the Mediterranean Sea using the SeaDataNet 2 dataset. The dataset contains about 140000 CTD, bottles, XBT and MBT profiles, covering the period from 1900 to 2013. The temperature and salinity climatological fields are produced by the DIVA software using a Variational Inverse Method and a Finite Element numerical technique to interpolate data on a regular grid. Our results are also compared with a previous version of climatological fields and the goodness of our climatologies is assessed, according to the goodness criteria suggested by Murphy (1993). Finally the temperature and salinity seasonal cycle for the Mediterranean Sea is described.
Resumo:
This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.
Resumo:
With the discovery that DNA can be successfully recovered from museum collections, a new source of genetic information has been provided to extend our comprehension of the evolutionary history of species. However, historical specimens are often mislabeled or report incorrect information of origin, thus accurate identification of specimens is essential. Due to the highly damaged nature of ancient DNA many pitfalls exist and particular precautions need to be considered in order to perform genetic analysis. In this study we analyze 208 historical remains of pelagic fishes collected in the beginning of the 20th century. Through the adaptation of existing protocols, usually applied to human remains, we manage to successfully retrieve valuable genetic material from almost all of the examined samples using a guanidine and silica column-based approach. The combined use of two mitochondrial markers cytochrome-oxidase-1(mtDNA COI) and Control Region (mtDNA CR), and the nuclear marker first internal transcriber space (ITS1) allowed us to identify the majority of the examined specimens using traditional PCR and Sanger sequencing techniques. The creation of primers capable of amplifying heavily degraded DNA have great potential for future uses, both in ancient and in modern investigation. The methodologies developed in this study can in fact be applied for other ancient fish specimens as well as cooked or canned samples.
Resumo:
Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.
Resumo:
ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.
Resumo:
The Gulf of Aqaba represents a small scale, easy to access, regional analogue of larger oceanic oligotrophic systems. In this Gulf, the seasonal cycles of stratification and mixing drives the seasonal phytoplankton dynamics. In summer and fall, when nutrient concentrations are very low, Prochlorococcus and Synechococcus are more abundant in the surface water. This two populations are exposed to phosphate limitation. During winter mixing, when nutrient concentrations are high, Chlorophyceae and Cryptophyceae are dominant but scarce or absent during summer. In this study it was tried to develop a simulation model based on historical data to predict the phytoplankton dynamics in the northern Gulf of Aqaba. The purpose is to understand what forces operate, and how, to determine the phytoplankton dynamics in this Gulf. To make the models data sampled in two different sampling station (Fish Farm Station and Station A) were used. The data of chemical, biological and physical factors, are available from 14th January 2007 to 28th December 2009. The Fish Farm Station point was near a Fish Farm that was operational until 17th June 2008, complete closure date of the Fish Farm, about halfway through the total sampling time. The Station A sampling point is about 13 Km away from the Fish Farm Station. To build the model, the MATLAB software was used (version 7.6.0.324 R2008a), in particular a tool named Simulink. The Fish Farm Station models shows that the Fish Farm activity has altered the nutrient concentrations and as a consequence the normal phytoplankton dynamics. Despite the distance between the two sampling stations, there might be an influence from the Fish Farm activities also in the Station A ecosystem. The models about this sampling station shows that the Fish Farm impact appears to be much lower than the impact in the Fish Farm Station, because the phytoplankton dynamics appears to be driven mainly by the seasonal mixing cycle.
Resumo:
In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.
Resumo:
Sea level variation is one of the parameters directly related to climate change. Monitoring sea level rise is an important scientific issue since many populated areas of the world and megacities are located in low-lying regions. At present, sea level is measured by means of two techniques: the tide gauges and the satellite radar altimetry. Tide gauges measure sea-level relatively to a ground benchmark, hence, their measurements are directly affected by vertical ground motions. Satellite radar altimetry measures sea-level relative to a geocentric reference and are not affected by vertical land motions. In this study, the linear relative sea level trends of 35 tide gauge stations distributed across the Mediterranean Sea have been computed over the period 1993-2014. In order to extract the real sea-level variation, the vertical land motion has been estimated using the observations of available GPS stations and removed from the tide gauges records. These GPS-corrected trends have then been compared with satellite altimetry measurements over the same time interval (AVISO data set). A further comparison has been performed, over the period 1993-2013, using the CCI satellite altimetry data set which has been generated using an updated modeling. The absolute sea level trends obtained from satellite altimetry and GPS-corrected tide gauge data are mostly consistent, meaning that GPS data have provided reliable corrections for most of the sites. The trend values range between +2.5 and +4 mm/yr almost everywhere in the Mediterranean area, the largest trends were found in the Northern Adriatic Sea and in the Aegean. These results are in agreement with estimates of the global mean sea level rise over the last two decades. Where GPS data were not available, information on the vertical land motion deduced from the differences between absolute and relative trends are in agreement with the results of other studies.