4 resultados para Trajectory design
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In designing the trajectory for a multiple flyby mission to asteroids the choice of the targets is the most challenging problem. This dissertation faces this problem in the framework of the recently issued medium-size mission call (M5) from ESA: CASTAway. Starting from the preliminary work done in [6], this thesis develops a methodology for sequencing the potential targets in a multiple flyby mission. In order to reduce the computational time, the complete database of known small bodies is firstly pruned on the base of heuristic considerations. Using the assumption of small manoeuvres, a chief orbit concept could be used. Thus, two heuristic thresholds are defined in order to exclude non-promising targets given a chief orbit. The sequencing process takes chief orbit and promising targets as inputs and gives a set of candidate sequences. The results of such a process are analysed in the CASTAway framework and the best feasible sequence studied in details.
Resumo:
The need for data collection from sensors dispersed in the environment is an increasingly important problem in the sector of telecommunications. LoRaWAN is one of the most popular protocols for low-power wide-area networks (LPWAN) that is made to solve the aforementioned problem. The aim of this study is to test the behavior of the LoRaWAN protocol when the gateway that collects data is implemented on a flying platform or, more specifically, a drone. This will be pursued using performance data in terms of access to the channel of the sensor nodes connected to the flying gateway. The trajectory of the aircraft is precomputed using a given algorithm and sensor nodes’ clusterization. The expected results are as follows: simulate the LoraWAN system behavior including the trajectory of the drone and the deployment of nodes; compare and discuss the effectiveness of the LoRaWAN simulator by conducting on-field trials, where the trajectory design and the nodes’ deployment are the same.
Resumo:
This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.