4 resultados para Traffic Engineering

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le intersezioni stradali, sono le aree individuate da tre o più tronchi stradali (archi) che convergono in uno stesso punto, nonchè dai dispositivi e dagli apprestamenti atti a consentire ed agevolare le manovre per il passaggio da un tronco all'altro. Rappresentano punti critici della rete viaria per effetto delle mutue interferenze tra le diverse correnti di traffico durante il loro attraversamento. Si acuiscono pertanto, nella loro "area di influenza", i problemi legati alla sicurezza e quelli relativi alla regolarità  ed efficienza della circolazione. Dalla numerosità  dei fattori da cui dipende la configurazione di un incrocio (numero e tipo di strade, entità  dei flussi, situazioni locali, ecc.) deriva una ancor più vasta gamma di tipologie e di schemi. La rotatoria, come particolare configurazione di intersezione a raso, è lo schema che viene considerato nel presente lavoro di tesi, sia nei suoi caratteri essenziali e generali, sia nel particolare di una intersezione che, nel Comune di Bologna, è stata realizzata in luogo dell'intersezione semaforizzata precedente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we state the collision avoidance problem as a vertex covering problem, then we consider a distributed framework in which a team of cooperating Unmanned Vehicles (UVs) aim to solve this optimization problem cooperatively to guarantee collision avoidance between group members. For this purpose, we implement a distributed control scheme based on a robust Set-Theoretic Model Predictive Control ( ST-MPC) strategy, where the problem involves vehicles with independent dynamics but with coupled constraints, to capture required cooperative behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The symbol in air traffic control (ATC), essentially unchanged since the beginning of commercial air traffic early last century, is the characteristic control tower with its large, tilted windows, situated at an exposed location, and rising high above the airport. “Remote Tower” is changing the provision of Air Traffic Services (ATS) in a way that it is more service tailored, dynamically located and available when and where needed, enabled by digital solutions replacing the physical presence of controllers and control towers at aerodromes with a remotely provided Air Traffic Service for Multiple Aerodromes. The paper examines this phenomenon that will mark an epochal change, analysing the experiments and validations carried out in the last years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urbanization has occasionally been linked to negative consequences. Traffic light system in urban arterial networks plays an essential role to the operation of transport systems. The availability of new Intelligent Transportation System innovations paved the way for connecting vehicles and road infrastructure. GLOSA, or the Green Light Optimal Speed Advisory, is a recent integration of vehicle-to-everything (v2x) technology. This thesis emphasized GLOSA system's potential as a tool for addressing traffic signal optimization. GLOSA serves as an advisory to drivers, informing them of the speed they must maintain to reduce waiting time. The considered study area in this thesis is the Via Aurelio Saffi – Via Emilia Ponente corridor in the Metropolitan City of Bologna which has several signalized intersections. Several simulation runs were performed in SUMOPy software on each peak-hour period (morning and afternoon) using recent actual traffic count data. GLOSA devices were placed on a 300m GLOSA distance. Considering the morning peak-hour, GLOSA outperformed the actuated traffic signal control, which is the baseline scenario, in terms of average waiting time, average speed, average fuel consumption per vehicle and average CO2 emissions. A remarkable 97% reduction on both fuel consumption and CO2 emissions were obtained. The average speed of vehicles running through the simulation was increased as well by 7% and a time saved of 25%. Same results were obtained for the afternoon peak hour with a decrease of 98% on both fuel consumption and CO2 emissions, 20% decrease on average waiting time, and an increase of 2% in average speed. In addition to previously mentioned benefits of GLOSA, a 15% and 13% decrease in time loss were obtained during morning and afternoon peak-hour, respectively. Towards the goal of sustainability, GLOSA shows a promising result of significantly lowering fuel consumption and CO2 emissions per vehicle.