9 resultados para Topological Entropy
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi abbiamo presentato il calcolo dell’Entropia di Entanglement di un sistema quantistico unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS, il cui punto critico é una realizzazione su reticolo di tutti i modelli conformi minimali. Sfruttando l’integrabilitá di questi modelli, abbiamo svolto il calcolo utilizzando la tecnica delle Corner Transfer Matrices (CTM). Il risultato ottenuto si discosta leggermente dalla previsione di J. Cardy e P. Calabrese ricavata utilizzando la teoria dei campi conformi descriventi il punto critico. Questa differenza é stata imputata alla non-unitarietá del modello studiato, in quanto la tecnica CTM studia il ground state, mentre la previsione di Cardy e Calabrese si focalizza sul vuoto conforme del modello: nel caso dei sistemi non-unitari questi due stati non coincidono, ma possono essere visti come eccitazioni l’uno dell’altro. Dato che l’Entanglement é un fenomeno genuinamente quantistico e il modello RSOS descrive un sistema statistico classico bidimensionale, abbiamo proposto una Hamiltoniana quantistica unidimensionale integrabile la cui rappresentazione statistica é data dal modello RSOS.
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
In questa tesi si è studiato un corpus di importanti testi della letteratura Italiana utilizzando la teoria dei network. Le misure topologiche tipiche dei network sono state calcolate sui testi letterari, poi sono state studiate le loro distribuzioni e i loro valori medi, per capire quali di esse possono distinguere un testo reale da sue modificazioni. Inoltre si è osservato come tutti i testi presentino due importanti leggi statistiche: la legge di Zipf e quella di Heaps.
Resumo:
Scopo di questo lavoro di tesi è lo studio di alcune proprietà delle teorie generali della gravità in relazione alla meccanica e la termodinamica dei buchi neri. In particolare, la trattazione che seguirà ha lo scopo di fornire un percorso autoconsistente che conduca alla nozione di entropia di un orizzonte descritta in termini delle carica di Noether associata all'invarianza del funzionale d'azione, che descrive la teoria gravitazionale in considerazione, per trasformazioni di coordinate generali. Si presterà particolare attenzione ad alcune proprietà geometriche della Lagrangiana, proprietà che sono indipendenti dalla particolare forma della teoria che si sta prendendo in considerazione; trattasi cioè non di proprietà dinamiche, legate cioè alla forma delle equazioni del moto del campo gravitazionale, ma piuttosto caratteristiche proprie di qualunque varietà rappresentante uno spaziotempo curvo. Queste caratteristiche fanno sì che ogni teoria generale della gravità possieda alcune grandezze definite localmente sullo spaziotempo, in particolare una corrente di Noether e la carica ad essa associata. La forma esplicita della corrente e della carica dipende invece dalla Lagrangiana che si sceglie di adottare per descrivere il campo gravitazionale. Il lavoro di tesi sarà orientato prima a descrivere come questa corrente di Noether emerge in qualunque teoria della gravità invariante per trasformazioni generali e come essa viene esplicitata nel caso di Lagrangiane particolari, per poi identificare la carica ad essa associata come una grandezza connessa all' entropia di un orizzonte in qualunque teoria generale della gravità.
Resumo:
In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.
Resumo:
The current climate crisis requires a comprehensive understanding of biodiversity to acknowledge how ecosystems’ responses to anthropogenic disturbances may result in feedback that can either mitigate or exacerbate global warming. Although ecosystems are dynamic and macroecological patterns change drastically in response to disturbance, dynamic macroecology has received insufficient attention and theoretical formalisation. In this context, the maximum entropy principle (MaxEnt) could provide an effective inference procedure to study ecosystems. Since the improper usage of entropy outside its scope often leads to misconceptions, the opening chapter will clarify its meaning by following its evolution from classical thermodynamics to information theory. The second chapter introduces the study of ecosystems from a physicist’s viewpoint. In particular, the MaxEnt Theory of Ecology (METE) will be the cornerstone of the discussion. METE predicts the shapes of macroecological metrics in relatively static ecosystems using constraints imposed by static state variables. However, in disturbed ecosystems with macroscale state variables that change rapidly over time, its predictions tend to fail. In the final chapter, DynaMETE is therefore presented as an extension of METE from static to dynamic. By predicting how macroecological patterns are likely to change in response to perturbations, DynaMETE can contribute to a better understanding of disturbed ecosystems’ fate and the improvement of conservation and management of carbon sinks, like forests. Targeted strategies in ecosystem management are now indispensable to enhance the interdependence of human well-being and the health of ecosystems, thus avoiding climate change tipping points.
Resumo:
In the last few years there has been a great development of techniques like quantum computers and quantum communication systems, due to their huge potentialities and the growing number of applications. However, physical qubits experience a lot of nonidealities, like measurement errors and decoherence, that generate failures in the quantum computation. This work shows how it is possible to exploit concepts from classical information in order to realize quantum error-correcting codes, adding some redundancy qubits. In particular, the threshold theorem states that it is possible to lower the percentage of failures in the decoding at will, if the physical error rate is below a given accuracy threshold. The focus will be on codes belonging to the family of the topological codes, like toric, planar and XZZX surface codes. Firstly, they will be compared from a theoretical point of view, in order to show their advantages and disadvantages. The algorithms behind the minimum perfect matching decoder, the most popular for such codes, will be presented. The last section will be dedicated to the analysis of the performances of these topological codes with different error channel models, showing interesting results. In particular, while the error correction capability of surface codes decreases in presence of biased errors, XZZX codes own some intrinsic symmetries that allow them to improve their performances if one kind of error occurs more frequently than the others.
Resumo:
The purpose of this thesis is to clarify the role of non-equilibrium stationary currents of Markov processes in the context of the predictability of future states of the system. Once the connection between the predictability and the conditional entropy is established, we provide a comprehensive approach to the definition of a multi-particle Markov system. In particular, starting from the well-known theory of random walk on network, we derive the non-linear master equation for an interacting multi-particle system under the one-step process hypothesis, highlighting the limits of its tractability and the prop- erties of its stationary solution. Lastly, in order to study the impact of the NESS on the predictability at short times, we analyze the conditional entropy by modulating the intensity of the stationary currents, both for a single-particle and a multi-particle Markov system. The results obtained analytically are numerically tested on a 5-node cycle network and put in correspondence with the stationary entropy production. Furthermore, because of the low dimensionality of the single-particle system, an analysis of its spectral properties as a function of the modulated stationary currents is performed.
Resumo:
Quantum clock models are statistical mechanical spin models which may be regarded as a sort of bridge between the one-dimensional quantum Ising model and the one-dimensional quantum XY model. This thesis aims to provide an exhaustive review of these models using both analytical and numerical techniques. We present some important duality transformations which allow us to recast clock models into different forms, involving for example parafermions and lattice gauge theories. Thus, the notion of topological order enters into the game opening new scenarios for possible applications, like topological quantum computing. The second part of this thesis is devoted to the numerical analysis of clock models. We explore their phase diagram under different setups, with and without chirality, starting with a transverse field and then adding a longitudinal field as well. The most important observables we take into account for diagnosing criticality are the energy gap, the magnetisation, the entanglement entropy and the correlation functions.