6 resultados para Titania-supported platinum
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Upgrade of biomass to valuable chemicals is a central topic in modern research due to the high availability and low price of this feedstock. For the difficulties in biomass treatment, different pathways are still under investigation. A promising way is in the photodegradation, because it can lead to greener transformation processes with the use of solar light as a renewable resource. The aim of my work was the research of a photocatalyst for the hydrolysis of cellobiose under visible irradiation. Cellobiose was selected because it is a model molecule for biomass depolymerisation studies. Different titania crystalline structures were studied to find the most active phase. Furthermore, to enhance the absorption of this semiconductor in the visible range, noble metal nanoparticles were immobilized on titania. Gold and silver were chosen because they present a Surface Plasmon Resonance band and they are active metals in several photocatalytic reactions. The immobilized catalysts were synthesized following different methods to optimize the synthetic steps and to achieve better performances. For the same purpose the alloying effect between gold and silver nanoparticles was examined.
Resumo:
Upgrade of hydrogen to valuable fuel is a central topic in modern research due to its high availability and low price. For the difficulties in hydrogen storage, different pathways are still under investigation. A promising way is in the liquid-phase chemical hydrogen storage materials, because they can lead to greener transformation processes with the on line development of hydrogen for fuel cells. The aim of my work was the optimization of catalysts for the decomposition of formic acid made by sol immobilisation method (a typical colloidal method). Formic acid was selected because of the following features: it is a versatile renewable reagent for green synthesis studies. The first aim of my research was the synthesis and optimisation of Pd nanoparticles by sol-immobilisation to achieve better catalytic performances and investigate the effect of particle size, oxidation state, role of stabiliser and nature of the support. Palladium was chosen because it is a well-known active metal for the catalytic decomposition of formic acid. Noble metal nanoparticles of palladium were immobilized on carbon charcoal and on titania. In the second part the catalytic performance of the “homemade” catalyst Pd/C to a commercial Pd/C and the effect of different monometallic and bimetallic systems (AuxPdy) in the catalytic formic acid decomposition was investigated. The training period for the production of this work was carried out at the University of Cardiff (Group of Dr. N. Dimitratos).
Resumo:
Il lavoro di questa tesi è incentrato sulla crescita e lo studio delle proprietà strutturali di sistemi nanostrutturati di titanio e ossido di titanio, prodotti mediante la tecnica della condensazione in gas inerte. Lo studio è finalizzato in particolare ad ottenere un materiale idoneo per la produzione di idrogeno tramite la foto-elettrolisi. Nel primo capitolo viene descritto a livello teorico il processo di scissione dell’acqua all’interno di celle foto-elettrochimiche, in cui viene impiegato il TiO2 (titania) come foto-anodo. Nel secondo capitolo viene introdotta la tecnica di crescita, viene descritta la macchina utilizzata illustrandone vantaggi e limitazioni. Inoltre viene fornita una descrizione teorica del tipo di crescita che avviene all’interno della camera di evaporazione. Allo scopo di comprendere meglio questi processi, vengono riportati nel capitolo 3 alcuni studi, basati su principi primi, riguardanti la stabilità di fase e le trasformazioni di fase per i tre principali polimorfi del TiO2. Nel capitolo 4 sono illustrate le tecniche impiegate per l’indagine strutturale: diffrazione e assorbimento di raggi X con relativa analisi dati, microscopia elettronica a scansione. Prima di misurare l’attività fotocatalitica dei campioni di nanoparticelle di titania, è necessario condurre delle misure di fotocorrente in una cella foto-elettrochimica, i risultati di queste analisi di tipo funzionale sono presentati nel capitolo 5. Nel capitolo 6 sono riportate le conclusioni del lavoro di tesi.
Resumo:
Biomass transformation into high-value chemicals has attracted attention according to the “green chemistry” principles. Low price and high availability make biomass one of the most interesting renewable resources as it provides the means to create sustainable alternatives to the oil-derived building blocks of the chemical industry In recent year, the need for alternative environmentally friendly routes to drive chemical reactions has in photocatalytic processes an interesting way to obtain valuable chemicals from various sources using the solar light as energy source. The purpose of this work was to use supported noble metal nanoparticles in the selective photo-oxidation of glucose through using visible light. Glucose was chosen as model molecule because it is the cheapest and the most common monosaccharide. Few studies about glucose photo oxidation have been conducted so far, and reaction mechanism is still not totally explained. The aim of this work was to systematically analyze and assess the impact of several parameters (eg. catalyst/substrate ratio, reaction time, effect of the solvent and light source) on the reaction pathway and to monitor the product distribution in order to draw a general reaction scheme for the photo oxidation of glucose under visible light. This study regards the reaction mechanism and the influence of several parameters, such as solvent, light power and substrate concentration. Furthermore, the work focuses on the influence of gold and silver nanoparticles and on the influence of metal loading. The glucose oxidation was monitored through the mass balance and the products selectivity. Reactions were evaluated in terms of glucose conversion, mass balance and selectivities towards arabinose and gluconic acid. In conclusion, this study is able to demonstrate that the photo oxidation of glucose under visible light is feasible; the full identification of the main products allows, for the first time, a comprehensive reaction mechanism scheme.
Resumo:
Preformed Au nanoparticles supported on activated carbon and TiO2 were synthesised by sol-immobilisation. Polyethylene glycol, polyvinyl pyrrolidone and polyvinyl alcohol were used as stabilisers for the gold nanoparticles at different polymer/Au wt/wt ratios for each polymer. The effect of polymer/Au wt/wt ratios was investigated on (i) the average nanoparticle size, (ii) catalytic activity for two reactions, 4-nitrophenol reduction and glucose oxidation to glucaric acid. 4-nitrophenol reduction is recognised as a model reaction for nanomaterial catalytic activity tests; glucose oxidation to glucaric acid is a reaction that is traditionally carried out with concentrated nitric acid, for which alternative reaction pathways are looked for in an effort to reduce its environmental impact. The catalysts were characterised from the nanoparticle synthesis by colloidal method by means of UV-vis spectroscopy and DLS analysis, to the immobilisation step by XRD and TEM. The effect of the polymer:Au wt/wt ratio on nanoparticle size depends on the polymer nature, and point out the need to optimise supported nanoparticle synthesis protocols in the future depending on the type of stabiliser. The catalytic tests revealed that the polymers interact with Au nanoparticles through different active sites. Activated carbon (AC) and TiO2 were compared as supports for Au nanoparticles stabilised by PVA at PVA/Au 0,65 wt/wt. AC-supported Au NPs were the most active for glucose oxidation while TiO2-stabilised Au NPs were five times more active in 4-nitrophenol reduction that AC-supported NPs. Hence support and stabiliser are important parameters that should be optimised in order to achieve high catalytic activity for a given reaction.
Resumo:
Metal nanoparticle catalysts have in the last decades been extensively researched for their enhanced performance compared to their bulk counterpart. Properties of nanoparticles can be controlled by modifying their size and shape as well as adding a support and stabilizing agent. In this study, preformed colloidal gold nanoparticles supported on activated carbon were tested on the reduction of 4-nitrophenol by NaBH4, a model reaction for evaluating catalytic activity of metal nanoparticles and one with high significance in the remediation of industrial wastewaters. Methods of wastewater remediation are reviewed, with case studies from literature on two major reactions, ozonation and reduction, displaying the synergistic effects observed with bimetallic and trimetallic catalysts, as well as the effects of differences in metal and support. Several methods of preparation of nanoparticles are discussed, in particular, the sol immobilization technique, which was used to prepare the supported nanoparticles in this study. Different characterization techniques used in this study to evaluate the materials and spectroscopic techniques to analyze catalytic activities of the catalyst are reviewed: ultraviolet-visible (UV-Vis) spectroscopy, dynamic light scattering (DLS) analysis, X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) imaging. Optimization of catalytic parameters was carried out through modifications in the reaction setup. The effects of the molar ratio of reactants, stirring, type and amount of stabilizing agent are explored. Another important factor of an effective catalyst is its reusability and long-term stability, which was examined with suggestions for further studies. Lastly, a biochar support was newly tested for its potential as a replacement for activated carbon.